已知函數(shù)g(x)=(a-2)x(x>-1),函數(shù)f(x)=ln(1+x)+bx的圖像如圖所示。
(Ⅰ)求b的值;
(Ⅱ)求函數(shù)F(x)=f(x)-g(x)的單調(diào)區(qū)間。

解:(Ⅰ)
由圖知,。
(Ⅱ)
,
因?yàn)?IMG style="VERTICAL-ALIGN: middle" src="http://thumb.zyjl.cn/pic1/upload/papers/g02/20110819/201108191722069211042.gif" border=0>,
當(dāng) a>0時(shí),
故函數(shù)F(x)的單調(diào)增區(qū)間是,單調(diào)減區(qū)間是
當(dāng)a<0時(shí),,故函數(shù)F(x)的單調(diào)增區(qū)間是(-1,+∞);
當(dāng)a=0時(shí),,故函數(shù)F(x)的單調(diào)增區(qū)間是(-1,+∞);
綜上所述:當(dāng)a>0 時(shí),函數(shù)F(x)的單調(diào)增區(qū)間是,單調(diào)減區(qū)間是
當(dāng)a≤0 時(shí),函數(shù)F(x)的單調(diào)增區(qū)間是(-1,+∞)。
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)g(x)=-
a2
3
x3+
a
2
x2+cx(a≠0)
,
(I)當(dāng)a=1時(shí),若函數(shù)g(x)在區(qū)間(-1,1)上是增函數(shù),求實(shí)數(shù)c的取值范圍;
(II)當(dāng)a≥
1
2
時(shí),(1)求證:對(duì)任意的x∈[0,1],g′(x)≤1的充要條件是c≤
3
4

(2)若關(guān)于x的實(shí)系數(shù)方程g′(x)=0有兩個(gè)實(shí)根α,β,求證:|α|≤1,且|β|≤1的充要條件是-
1
4
≤c≤a2-a

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知向量
m
=(coswx,sinwx),
n
=(coswx,
3
coswx)
,設(shè)函數(shù)f(x)=
m
n
+1
且f(x)的最小正周期為2π.
(I)求f(x)的單調(diào)遞增區(qū)間和最值;
(II)已知函數(shù)g(x)=
tanx-tan3x
1+2tan2x+tan4x
,求證:f(x)>g(x).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)g(x)=
x2-2
(x≥2)
的導(dǎo)數(shù)為g′(x)=
x
x2-2
(x≥2)
,記函數(shù)f(x)=x-kg(x)(x≥2,k為常數(shù)).
(1)若函數(shù)f(x)在區(qū)間(2,+∞)上為減函數(shù),求k的取值范圍;
(2)求函數(shù)f(x)的值域.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)g(x)=1-2x , f[g(x)]=
1-x2
x2
 (x≠0)
,則f(0)等于( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)g(x)=
x+2,x>-
1
2
-x-
1
2x
,-
2
2
<x≤-
1
2
2
,x≤-
2
2
,若g(a)≥g(
1
a
)
,則實(shí)數(shù)a的取值范圍是
[-
2
,0)∪[1,+∞)
[-
2
,0)∪[1,+∞)

查看答案和解析>>

同步練習(xí)冊(cè)答案