【答案】
分析:(1)設(shè)過M點的切線方程,代入x
2=4y,整理得x
2-4kx+4=0,令△=0,可得A,B的坐標(biāo),利用M到AB的中點(0,1)的距離為2,可得過M,A,B三點的圓的方程,從而可判斷圓與直線l:y=-1相切;
(2)證法一:設(shè)切點分別為A(x
1,y
1),B(x
2,y
2),過拋物線上點A(x
1,y
1)的切線方程為
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131024190603602346186/SYS201310241906036023461019_DA/0.png)
,代入x
2=4y,消元,利用△=0,即可確定
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131024190603602346186/SYS201310241906036023461019_DA/1.png)
,利用切線過點M(x
,y
),所以可得
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131024190603602346186/SYS201310241906036023461019_DA/2.png)
,同理可得
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131024190603602346186/SYS201310241906036023461019_DA/3.png)
,由此可得直線AB的方程,從而可得結(jié)論;
證法二:設(shè)過M(x
,y
)的拋物線的切線方程為
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131024190603602346186/SYS201310241906036023461019_DA/4.png)
(k≠0),代入x
2=4y,消去y,利用韋達定理
,確定直線AB的方程,從而可得結(jié)論;
證法三:利用導(dǎo)數(shù)法,確定切線的斜率,得切線方程,由此可得直線AB的方程,從而可得結(jié)論;
(3)由(2)中①②兩式知x
1,x
2是方程
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131024190603602346186/SYS201310241906036023461019_DA/5.png)
的兩實根,故有
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131024190603602346186/SYS201310241906036023461019_DA/6.png)
,從而可得
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131024190603602346186/SYS201310241906036023461019_DA/7.png)
=4m
2+m
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131024190603602346186/SYS201310241906036023461019_DA/8.png)
-4m-
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131024190603602346186/SYS201310241906036023461019_DA/9.png)
=(m-1)(
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131024190603602346186/SYS201310241906036023461019_DA/10.png)
+4m),分類討論,利用
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131024190603602346186/SYS201310241906036023461019_DA/11.png)
=0,k
ABk
MA=-1,即可求得結(jié)論.
解答:(1)證明:當(dāng)M的坐標(biāo)為(0,-1)時,設(shè)過M點的切線方程為y=kx-1,代入x
2=4y,整理得x
2-4kx+4=0,
令△=16k
2-16=0,解得k=±1,
代入方程得x=±2,故得A(2,1),B(-2,1),…(2分)
因為M到AB的中點(0,1)的距離為2,
從而過M,A,B三點的圓的方程為x
2+(y-1)
2=4.
∵圓心坐標(biāo)為(0,1),半徑為2,∴圓與直線l:y=-1相切…(4分)
(2)證法一:設(shè)切點分別為A(x
1,y
1),B(x
2,y
2),過拋物線上點A(x
1,y
1)的切線方程為
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131024190603602346186/SYS201310241906036023461019_DA/12.png)
,代入x
2=4y,整理得x
2-4kx+4(kx
1-y
1)=0△=(4k)
2-4×4(kx
1-y
1)=0,又因為
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131024190603602346186/SYS201310241906036023461019_DA/13.png)
,所以
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131024190603602346186/SYS201310241906036023461019_DA/14.png)
…(6分)
從而過拋物線上點A(x
1,y
1)的切線方程為
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131024190603602346186/SYS201310241906036023461019_DA/15.png)
即
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131024190603602346186/SYS201310241906036023461019_DA/16.png)
又切線過點M(x
,y
),所以得
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131024190603602346186/SYS201310241906036023461019_DA/17.png)
①即
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131024190603602346186/SYS201310241906036023461019_DA/18.png)
…(8分)
同理可得過點B(x
2,y
2)的切線為
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131024190603602346186/SYS201310241906036023461019_DA/19.png)
,
又切線過點M(x
,y
),所以得
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131024190603602346186/SYS201310241906036023461019_DA/20.png)
②…(10分)
即
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131024190603602346186/SYS201310241906036023461019_DA/21.png)
…(6分)
即點A(x
1,y
1),B(x
2,y
2)均滿足
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131024190603602346186/SYS201310241906036023461019_DA/22.png)
即x
x=2(y
+y),故直線AB的方程為x
x=2(y
+y)…(12分)
又M(x
,y
)為直線l:y=-m(m>0)上任意一點,故x
x=2(y-m)對任意x
成立,所以x=0,y=m,從而直線AB恒過定點(0,m)…(14分)
證法二:設(shè)過M(x
,y
)的拋物線的切線方程為
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131024190603602346186/SYS201310241906036023461019_DA/23.png)
(k≠0),
代入x
2=4y,消去y,得x
2-4kx-4(y
-kx
)=0
∴△=(4k)
2+4×4(y
-kx
)=0即:k
2-x
k+y
=0…(6分)
從而
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131024190603602346186/SYS201310241906036023461019_DA/24.png)
,
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131024190603602346186/SYS201310241906036023461019_DA/25.png)
此時
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131024190603602346186/SYS201310241906036023461019_DA/26.png)
,
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131024190603602346186/SYS201310241906036023461019_DA/27.png)
所以切點A,B的坐標(biāo)分別為
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131024190603602346186/SYS201310241906036023461019_DA/28.png)
,
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131024190603602346186/SYS201310241906036023461019_DA/29.png)
…(8分)
因為
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131024190603602346186/SYS201310241906036023461019_DA/30.png)
,
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131024190603602346186/SYS201310241906036023461019_DA/31.png)
,
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131024190603602346186/SYS201310241906036023461019_DA/32.png)
,
所以AB的中點坐標(biāo)為
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131024190603602346186/SYS201310241906036023461019_DA/33.png)
…(11分)
故直線AB的方程為
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131024190603602346186/SYS201310241906036023461019_DA/34.png)
,即x
x=2(y
+y)…(12分)
又M(x
,y
)為直線l:y=-m(m>0)上任意一點,故x
x=2(y-m)對任意x
成立,所以x=0,y=m,從而直線AB恒過定點(0,m)…(14分)
證法三:由已知得
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131024190603602346186/SYS201310241906036023461019_DA/35.png)
,求導(dǎo)得
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131024190603602346186/SYS201310241906036023461019_DA/36.png)
,切點分別為A(x
1,y
1),B(x
2,y
2),故過點A(x
1,y
1)的切線斜率為
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131024190603602346186/SYS201310241906036023461019_DA/37.png)
,從而切線方程為
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131024190603602346186/SYS201310241906036023461019_DA/38.png)
即
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131024190603602346186/SYS201310241906036023461019_DA/39.png)
…(7分)
又切線過點M(x
,y
),所以得
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131024190603602346186/SYS201310241906036023461019_DA/40.png)
①即
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131024190603602346186/SYS201310241906036023461019_DA/41.png)
…(8分)
同理可得過點B(x
2,y
2)的切線為
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131024190603602346186/SYS201310241906036023461019_DA/42.png)
,
又切線過點M(x
,y
),所以得
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131024190603602346186/SYS201310241906036023461019_DA/43.png)
②即
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131024190603602346186/SYS201310241906036023461019_DA/44.png)
…(10分)
即點A(x
1,y
1),B(x
2,y
2)均滿足
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131024190603602346186/SYS201310241906036023461019_DA/45.png)
即x
x=2(y
+y),故直線AB的方程為x
x=2(y
+y)…(12分)
又M(x
,y
)為直線l:y=-m(m>0)上任意一點,故x
x=2(y-m)對任意x
成立,所以x=0,y=m,從而直線AB恒過定點(0,m)…(14分)
(3)由(2)中①②兩式知x
1,x
2是方程
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131024190603602346186/SYS201310241906036023461019_DA/46.png)
的兩實根,故有
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131024190603602346186/SYS201310241906036023461019_DA/47.png)
∵
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131024190603602346186/SYS201310241906036023461019_DA/48.png)
,
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131024190603602346186/SYS201310241906036023461019_DA/49.png)
,y
=m
∴
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131024190603602346186/SYS201310241906036023461019_DA/50.png)
=4m
2+m
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131024190603602346186/SYS201310241906036023461019_DA/51.png)
-4m-
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131024190603602346186/SYS201310241906036023461019_DA/52.png)
=(m-1)(
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131024190603602346186/SYS201310241906036023461019_DA/53.png)
+4m),…(9分)
①當(dāng)m=1時,
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131024190603602346186/SYS201310241906036023461019_DA/54.png)
=0,直線l上任意一點M均有MA⊥MB,△MAB為直角三角形;…(10分)
②當(dāng)0<m<1時,
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131024190603602346186/SYS201310241906036023461019_DA/55.png)
<0,∠AMB>
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131024190603602346186/SYS201310241906036023461019_DA/56.png)
,△MAB不可能為直角三角形;…(11分)
③當(dāng)m>1時,
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131024190603602346186/SYS201310241906036023461019_DA/57.png)
>0,∠AMB<
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131024190603602346186/SYS201310241906036023461019_DA/58.png)
,.
因為k
AB=
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131024190603602346186/SYS201310241906036023461019_DA/59.png)
=
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131024190603602346186/SYS201310241906036023461019_DA/60.png)
=
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131024190603602346186/SYS201310241906036023461019_DA/61.png)
,
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131024190603602346186/SYS201310241906036023461019_DA/62.png)
=
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131024190603602346186/SYS201310241906036023461019_DA/63.png)
,
所以k
ABk
MA=
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131024190603602346186/SYS201310241906036023461019_DA/64.png)
若k
ABk
MA=-1,則
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131024190603602346186/SYS201310241906036023461019_DA/65.png)
,整理得(y
+2)
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131024190603602346186/SYS201310241906036023461019_DA/66.png)
=-4,
又因為y
=-m,所以(m-2)
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131024190603602346186/SYS201310241906036023461019_DA/67.png)
=4,
因為方程(m-2)
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131024190603602346186/SYS201310241906036023461019_DA/68.png)
=4有解的充要條件是m>2,所以當(dāng)m>2時,有MA⊥AB或MB⊥AB,△MAB為直角三角形…(13分)
綜上所述,當(dāng)m=1時,直線l上任意一點M,使△MAB為直角三角形,當(dāng)m>2時,直線l上存在兩點M,使△MAB為直角三角形;當(dāng)0<m<1或1<m≤2時,△MAB不是直角三角形.…(14分)
點評:本題考查圓的方程,考查拋物線的切線,考查直線恒過定點,考查三角形形狀的判斷,考查分類討論的數(shù)學(xué)思想,確定切線方程,及直線AB的方程是關(guān)鍵.