已知f(x)=|6x+a|,若不等式f(x)≥2的解集為{x|x≥-
1
6
或x≤-
5
6
},則實(shí)數(shù)a的值為( 。
A、1B、2C、3D、4
考點(diǎn):絕對值不等式的解法
專題:不等式的解法及應(yīng)用
分析:由題意可得-
1
6
和-
5
6
滿足6x+a=0,從而求得a的值.
解答: 解:由題意可得-
1
6
和-
5
6
滿足6x+a=0,∴6×(-
1
6
)+a=0,求得a=1,
故選:A.
點(diǎn)評:本題主要考查絕對值不等式的解法,屬于基礎(chǔ)題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

函數(shù)f(x)=
1
log0.5x
的定義域?yàn)?div id="bkhifh0" class='quizPutTag' contenteditable='true'> 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知變量x,y滿足約束條件
x+2y≥2
2x+y≤4
4x-y≥-1
,則目標(biāo)函數(shù)z=3x-y+3的取值范圍為( 。
A、[-
3
2
,6]
B、[
3
2
,9]
C、[-2,3]
D、[1,6]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

把函數(shù)y=sin3x的圖象適當(dāng)變化就可以得到y(tǒng)=
2
2
(sin3x-cos3x)的圖象,這個(gè)變化可以是( 。
A、沿x軸方向向右平移
π
4
B、沿x軸方向向左平移
π
4
C、沿x軸方向向右平移
π
12
D、沿x軸方向向左平移
π
12

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知m,n是不重合的直線,α,β是不重合的平面,有下列命題:①若m?α,n∥α,則m∥n;②若m∥α,m∥β,則α∥β;③若α∩β=n,m∥n,則 m∥α,m∥β;其中正確的命題的個(gè)數(shù)是( 。
A、0個(gè)B、1個(gè)C、2個(gè)D、3個(gè)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=|x+2|-|x-1|,則f(x)的值域是( 。
A、(-3,3)
B、[-3,3]
C、[3,+∞)
D、[-3,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在演繹推理“因?yàn)槠叫兴倪呅蔚膶蔷互相平分,而正方形是平行四邊形,所以正方形的對角線互相平分.”中“正方形是平行四邊形”是“三段論”的(  )
A、大前提B、小前提
C、結(jié)論D、其它

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

F1,F(xiàn)2分別是雙曲線
x2
a2
-
y2
b2
=1(a>0,b>0)的左右焦點(diǎn),以O(shè)為圓心,OF1為半徑的圓與雙曲線在第一象限的交點(diǎn)為P,若三角形PF1F2的面積為3a2,則雙曲線離心率為( 。
A、
2
B、
3
C、
6
2
D、2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=2cos(ωx+
π
3
),ω>0,x∈R,且以π為最小正周期.
(1)求f(0)的值;
(2)求f(x)的解析式;
(3)已知f(
α
2
-
π
6
)=
8
5
,求sinα的值.

查看答案和解析>>

同步練習(xí)冊答案