如圖,在以點(diǎn)O為圓心,AB為直徑的半圓中,D為半圓弧的中點(diǎn), P為半圓弧上一點(diǎn),且AB=4,∠POB=30°,雙曲線C以A,B為焦點(diǎn)且經(jīng)過點(diǎn)P.

(Ⅰ)建立適當(dāng)?shù)钠矫嬷苯亲鴺?biāo)系,求雙曲線C的方程;

(Ⅱ)設(shè)過點(diǎn)D的直線l與雙曲線C相交于不同兩點(diǎn)E、F,

若△OEF的面積不小于2,求直線l的斜率的取值范圍.

(Ⅰ)雙曲線C的方程是.(Ⅱ)直線l的斜率的取值范圍是[-,-1)(-1,1)(1,].  ;


解析:

(Ⅰ)方法一:以O(shè)為原點(diǎn),AB、OD所在直線分別

x軸、y軸建立平面直角坐標(biāo)系,則

點(diǎn)A(-2,0),B(2,0),P(,1).                                          

設(shè)雙曲線實(shí)半軸長為a,虛半軸長為b,半焦距為c,則

2a=|PA|-|PB|=,2c=|AB|=4.    

所以a,c=2,從而b2c2a2=2.                                        

故雙曲線C的方程是.                                            

方法二:以O(shè)為原點(diǎn),AB、OD所在直線分別為x軸、y軸建立平面直角坐標(biāo)系,則

點(diǎn)A(-2,0),B(2,0),P(,1).                                          

設(shè)雙曲線C的方程為>0,b>0),則.              

解得a2b2=2,故雙曲線C的方程是                             

(Ⅱ)據(jù)題意可設(shè)直線l的方程為ykx+2,代入雙曲線C的方程得,,

即(1-k2)x2-4kx6=0.                                                         

因?yàn)橹本l與雙曲線C相交于不同兩點(diǎn)E、F,則

   即                         

設(shè)點(diǎn)E(x1y1),F(xiàn)(x2,y2),則x1x2.                     

所以|EF|=

又原點(diǎn)O到直線l的距離d.                                        

所以S△DEF=      

因?yàn)镾△OEF,則

綜上分析,直線l的斜率的取值范圍是[-,-1)(-1,1)(1,].       

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,在以點(diǎn)O為圓心,|AB|=4為直徑的半圓ADB中,OD⊥AB,P是半圓弧上一點(diǎn),∠POB=30°,曲線C是滿足||MA|-|MB||為定值的動(dòng)點(diǎn)M的軌跡,且曲線C過點(diǎn)P.
(Ⅰ)建立適當(dāng)?shù)钠矫嬷苯亲鴺?biāo)系,求曲線C的方程;
(Ⅱ)設(shè)過點(diǎn)D的直線l與曲線C相交于不同的兩點(diǎn)E、F.若△OEF的面積不小于2
2
,求直線l斜率的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,在以點(diǎn)O為圓心,AB為直徑的半圓中,D為半圓弧的中心,P為半圓弧上一點(diǎn),且AB=4,∠POB=30°,雙曲線C以A,B為焦點(diǎn)且經(jīng)過點(diǎn)P.
(1)建立適當(dāng)?shù)钠矫嬷苯亲鴺?biāo)系,求雙曲線C的方程;
(2)設(shè)過點(diǎn)D的直線l與雙曲線C相交于不同兩點(diǎn)E、F,若△OEF的面積不小于2
2
,求直線l的斜率的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2009-2010學(xué)年湖南師大附中高三(上)第三次月考數(shù)學(xué)試卷(理科)(解析版) 題型:解答題

如圖,在以點(diǎn)O為圓心,|AB|=4為直徑的半圓ADB中,OD⊥AB,P是半圓弧上一點(diǎn),∠POB=30°,曲線C是滿足||MA|-|MB||為定值的動(dòng)點(diǎn)M的軌跡,且曲線C過點(diǎn)P.
(Ⅰ)建立適當(dāng)?shù)钠矫嬷苯亲鴺?biāo)系,求曲線C的方程;
(Ⅱ)設(shè)過點(diǎn)D的直線l與曲線C相交于不同的兩點(diǎn)E、F.若△OEF的面積不小于,求直線l斜率的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2008年普通高等學(xué)校招生全國統(tǒng)一考試?yán)砜茢?shù)學(xué)(湖北卷) 題型:解答題

(本小題滿分13分)

如圖,在以點(diǎn)O為圓心,|AB|=4為直徑的半圓ADB中,ODABP是半圓弧上一點(diǎn),

POB=30°,曲線C是滿足||MA|-|MB||為定值的動(dòng)點(diǎn)M的軌跡,且曲線C過點(diǎn)P。

(Ⅰ)建立適當(dāng)?shù)钠矫嬷苯亲鴺?biāo)系,求曲線C的方程;

(Ⅱ)設(shè)過點(diǎn)D的直線l與曲線C相交于不同的兩點(diǎn)E、F。若△OEF的面積不小于2,求直線l斜率的取值范圍。

 

查看答案和解析>>

同步練習(xí)冊答案