精英家教網 > 高中數學 > 題目詳情
已知函數f(x)=asinx-cos2x+a-
3
a
+1,a∈R,a≠0.
(1)若對任意x∈R,都有f(x)≤0,求a的取值范圍;
(2)若a≥2,且存在x∈R,使得f(x)≤0,求a的取值范圍.
考點:三角不等式
專題:三角函數的圖像與性質
分析:(1)函數f(x)=asinx-cos2x+a-
3
a
+1=(sinx+
a
2
)2
+a-
3
a
-
a2
4
.對a分類討論,利用二次函數的單調性即可得出.
(2)利用(1)的討論及其存在的意義進行等價轉化,解出即可.
解答: 解:(1)函數f(x)=asinx-cos2x+a-
3
a
+1=sin2x+asinx+a-
3
a
=(sinx+
a
2
)2
+a-
3
a
-
a2
4

①當-
a
2
≥1,a≤-2時,當sinx=-1時,f(x)取得最大值,∴1-a+a-
3
a
≤0,解得0<a≤3,應該舍去.
②當-
a
2
-1,即a≥2時,當sinx=1時,f(x)取得最大值,∴1+a+a-
3
a
≤0,解得-
3
2
≤a≤1,應該舍去.
③當-1<-
a
2
<1
且a≠0,即-2<a<2,且a≠0時,由上面可知:
0<a≤3
-
3
2
≤a≤1
,解得0<a≤1.
(2)a≥2,且存在x∈R,使得f(x)≤0,
由上面的②可知:當sinx=-1時,f(x)取得最小值,
∴1-a+a-
3
a
≤0,解得0<a≤3,又a≥2,
∴2≤a≤3.
點評:本題考查了二次函數的單調性、正弦函數的單調性與有界性,考查了分類討論的思想方法,考查了推理能力與計算能力,屬于難題.
練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

已知二次函數y=7x2-(k+13)x+k2-k-2與x軸有兩個交點A(α,0)、B(β,0),若0<α<1,1<β<2,求實數k的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:

如圖,△ABC內接于⊙O,AB是⊙O的不是直徑的弦,∠CAD=∠ABC,判斷直線AD與⊙O的位置關系,并說明理由.

查看答案和解析>>

科目:高中數學 來源: 題型:

畫出我們已學過的數系的知識結構圖.

查看答案和解析>>

科目:高中數學 來源: 題型:

一個幾何體的三視圖如圖所示,且其左視圖是一個等邊三角形,則這個幾何體的體積為( 。
A、12+
2
B、36+
2
C、18+
4
D、6+
4

查看答案和解析>>

科目:高中數學 來源: 題型:

下列說法中不正確的是( 。
A、對于線性回歸方程
y
=
b
x+
a
,直線必經過點(
.
x
,
.
y
B、莖葉圖的優(yōu)點在于它可以保存原始數據,并且可以隨時記錄
C、將一組數據中的每一個數據都加上或減去同一常數后,方差恒不變
D、擲一枚均勻硬幣連續(xù)出現(xiàn)5次正面,第6次擲這枚硬幣一定出現(xiàn)反面

查看答案和解析>>

科目:高中數學 來源: 題型:

已知命題P:a2<a,命題Q:對任何x∈R,都有x2+4ax+1>0,命題P且Q為假,P或Q為真,求實數a的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:

已知p:關于x的方程x2+mx+1=0有兩個不等的負實數根;q:關于x的方程4x2+4(m-2)x+1=0的兩個實數根分別在區(qū)間(0,2)與(2,3)內.
(1)若¬p是真命題,則實數m的取值范圍為
 
;
(2)若(¬p)∧(¬q)是真命題,則實數m的取值范圍為
 

查看答案和解析>>

科目:高中數學 來源: 題型:

設全集I是實數集R.M={x|x>2或x<-2}與N={x|1<x<3}都是I的子集(如圖所示),則陰影部分所表示的集合為( 。
A、{x|x<2}
B、{x|-2≤x<1}
C、{x|1<x≤2}
D、{x|-2≤x≤2}

查看答案和解析>>

同步練習冊答案