【題目】如圖所示,圓錐SO的底面圓半徑|OA|=1,其側(cè)面展開圖是一個圓心角為 的扇形.

(1)求此圓錐的表面積;
(2)求此圓錐的體積.

【答案】
(1)解:因為|OA|=1,所以底面圓周長為2π

所以底面圓的面積為π,

所以弧AB長為2π,

又因為 ,則有 ,所以SA=3.…

扇形ASB的面積為 ,

所以圓錐的表面積=π+3π=4π


(2)解:在Rt△SOA中,|OA|=1. = ,

所以圓錐的體積


【解析】(1)圓錐的表面積由圓錐的底面積與圓錐的側(cè)面積(扇形ASB的面積)兩部分組成,分別求解相加即可.
(2)由h = S O =. 求出h,結(jié)合V = π r 2 h求出圓錐的體積 .
【考點精析】根據(jù)題目的已知條件,利用旋轉(zhuǎn)體(圓柱、圓錐、圓臺)的相關(guān)知識可以得到問題的答案,需要掌握常見的旋轉(zhuǎn)體有:圓柱、圓錐、圓臺、球.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】定義一個集合A的所有子集組成的集合叫做集合A的冪集,記為P(A),用n(A)表示有限集A的元素個數(shù),給出下列命題:①對于任意集合A,都有AP(A);②存在集合A,使得n[P(A)]=3;③用表示空集,若A∩B=,則P(A)∩P(B)=;④若A B,,則P(A) P(B);⑤若n(A)-n(B)=1,則n[P(A)]=2×n[P(B)]其中正確的命題個數(shù)為( )。
A.4
B.3
C.2
D.1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】函數(shù)f(x)=2x2﹣mx+2當(dāng)x∈[﹣2,+∞)時是增函數(shù),則m的取值范圍是( 。
A.(﹣∞,+∞)
B.[8,+∞)
C.(﹣∞,﹣8]
D.(﹣∞,8]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】定義在R上的函數(shù)y=f(x),恒有f(x)=f(2﹣x)成立,且f′(x)(x﹣1)>0,對任意的x1<x2 , 則f(x1)<f(x2)成立的充要條件是( )
A.x2>x1≥1
B.x1+x2>2
C.x1+x2≤2
D.x2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系xOy中,已知曲線 (a為參數(shù)),直線l:x﹣y﹣6=0.
(1)在曲線C上求一點P,使點P到直線l的距離最大,并求出此最大值;
(2)過點M(﹣1,0)且與直線l平行的直線l1交C于A,B兩點,求點M到A,B兩點的距離之積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】下列函數(shù)既是奇函數(shù)又在(0,+∞)上單調(diào)遞減的是( )
A.f(x)=x4
B.
C.
D.f(x)=x3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)=xlnx﹣x﹣ (a∈R),在定義域內(nèi)有兩個不同的極值點x1 , x2(x1<x2).
( I)求a的取值范圍;
( II)求證:x1+x2>2e.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)=(ax﹣1)ex(a≠0,e是自然對數(shù)的底數(shù)).
(1)若函數(shù)f(x)在區(qū)間[1,2]上是單調(diào)減函數(shù),求實數(shù)a的取值范圍;
(2)求函數(shù)f(x)的極值;
(3)設(shè)函數(shù)f(x)圖象上任意一點處的切線為l,求l在x軸上的截距的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,直線y=ax+2與曲線y=f(x)交于A、B兩點,其中A是切點,記h(x)= ,g(x)=f(x)﹣ax,則下列判斷正確的是( )

A.h(x)只有一個極值點
B.h(x)有兩個極值點,且極小值點小于極大值點
C.g(x)的極小值點小于極大值點,且極小值為﹣2
D.g(x)的極小值點大于極大值點,且極大值為2

查看答案和解析>>

同步練習(xí)冊答案