【題目】設(shè)雙曲線 =1(a>0,b>0)的右焦點(diǎn)為F,右頂點(diǎn)為A,過F作AF的垂線與雙曲線的兩條漸近線交于B、C兩點(diǎn),過B、C分別作AC、AB的垂線,兩垂線交于點(diǎn)D.若D到直線BC的距離小于2(a+ ),則該雙曲線的離心率的取值范圍是( )
A.(1,2)
B.( ,2)
C.(1, )
D.( , )
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,梯形中, ,矩形所在的平面與平面垂直,且.
(Ⅰ)求證:平面平面;
(Ⅱ)若為線段上一點(diǎn),平面與平面所成的銳二面角為,求的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】運(yùn)行如圖所示的程序框圖,若輸出的結(jié)果為 ,則判斷框內(nèi)可以填( )
A.k>98?
B.k≥99?
C.k≥100?
D.k>101?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】(本小題滿分為14分)已知定義域?yàn)镽的函數(shù)是奇函數(shù).
(1)求a,b的值;
(2)若對任意的t∈R,不等式f(t2-2t)+f(2t2-k)<0恒成立,求k的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】下列命題中,真命題的是( )
A.已知f(x)=sin2x+ ,則f(x)的最小值是2
B.已知數(shù)列{an}的通項(xiàng)公式為an=n+ ,則{an}的最小項(xiàng)為2
C.已知實(shí)數(shù)x,y滿足x+y=2,則xy的最大值是1
D.已知實(shí)數(shù)x,y滿足xy=1,則x+y的最小值是2
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】(本小題滿分為14分)如圖1所示,在Rt△ABC中,AC=6,BC=3,∠ABC=90°,CD為∠ACB的平分線,點(diǎn)E在線段AC上,CE=4.如圖2所示,將△BCD沿CD折起,使得平面BCD⊥平面ACD,連結(jié)AB,設(shè)點(diǎn)F是AB的中點(diǎn).
(1)求證:DE⊥平面BCD;
(2)在圖2中,若EF∥平面BDG,其中G為直線AC與平面BDG的交點(diǎn),求三棱錐BDEG的體積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知拋物線y2=2px(p>0)的焦點(diǎn)為F,直線y=x﹣8與此拋物線交于A、B兩點(diǎn),與x軸交于點(diǎn)C,O為坐標(biāo)原點(diǎn),若 =3 .
(1)求此拋物線的方程;
(2)求證:OA⊥OB.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】若數(shù)列{an}的前n項(xiàng)和為Sn , 滿足a1=1,Sn=an+1+n,則其通項(xiàng)公式為 .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=x2﹣2x,g(x)=ax+2(a>0),若x1∈[﹣1,2],x2∈[﹣1,2],使得f(x1)=g(x2),則實(shí)數(shù)a的取值范圍是( )
A.
B.
C.(0,3]
D.[3,+∞)
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com