已知雙曲線與橢圓
共焦點,且以
為漸近線,求雙曲線方程.
由橢圓
.
設(shè)雙曲線方程為
,則
故所求雙曲線方程為
練習(xí)冊系列答案
相關(guān)習(xí)題
科目:高中數(shù)學(xué)
來源:不詳
題型:解答題
已知橢圓C:
=1(a>b>0)的離心率為
,以原點為圓點,橢圓的短半軸為半徑的圓與直線x-y+
=0相切。
(Ⅰ)求橢圓的標(biāo)準(zhǔn)方程;
(Ⅱ)設(shè)P(4,0),A,B是橢圓C上關(guān)于x軸對稱的任意兩個不同的點,連接PB交隨圓C于另一點E,證明直線AE與x軸相交于定點Q;
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:解答題
已知橢圓
的離心率為
,一個焦點為
.
(Ⅰ)求橢圓
的方程;
(Ⅱ)設(shè)直線
交橢圓
于
,
兩點,若點
,
都在以點
為圓心的圓上,求
的值.
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:解答題
已知焦點在
軸上橢圓的長軸的端點分別為
,
為橢圓的中心,
為右焦點,且
,離心率
。
(Ⅰ)求橢圓的標(biāo)準(zhǔn)方程;
(Ⅱ)記橢圓的上頂點為
,直線
交橢圓于
兩點,問:是否存在直線
,使點
恰好為
的垂心?若存在,求出直線
的方程,若不存在,請說明理由。
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:解答題
如圖橢圓
的右頂點是
,上下兩個頂點分別為
,四邊形
是矩形(
為原點),點
分別為線段
的中點.
(Ⅰ)證明:直線
與直線
的交點在橢圓
上;
(Ⅱ)若過點
的直線交橢圓于
兩點,
為
關(guān)于
軸的對稱點(
不共線),問:直線
是否經(jīng)過
軸上一定點,如果是,求這個定點的坐標(biāo),如果不是,說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:填空題
已知橢圓
與雙曲線
有相同的焦點
、
,點
是
與
的一個公共點,
是一個以
為底的等腰三角形,
,
的離心率為
,則
的離心率為
.
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:解答題
已知橢圓兩個焦點
的坐標(biāo)分別為
,
,并且經(jīng)過點
.過左焦點
,斜率為
的直線與橢圓交于
,
兩點.設(shè)
,延長
,
分別與橢圓交于
兩點.
(I)求橢圓的標(biāo)準(zhǔn)方程; (II)若點
,求
點的坐標(biāo);
(III)設(shè)直線
的斜率為
,求證:
為定值.
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:解答題
. (本小題滿分12分)
如圖,設(shè)拋物線C
1:
的準(zhǔn)線與x軸交于F
1,焦點為F
2;以F
1,F
2為焦點,離心率
的橢圓C
2與拋物線C
1在X軸上方的交點為P,延長PF
2交拋物線于點Q,M是拋物線上一動點,且M在P與Q之間運動.
(I)當(dāng)m =1時,求橢圓C
2的方程;
(II)當(dāng)
的邊長恰好是三個連續(xù)的自然數(shù)時,求
面積的最大值.
查看答案和解析>>