動(dòng)點(diǎn)P(x,y)(x≥0)到點(diǎn)F(1,0)的距離與點(diǎn)P到y(tǒng)軸的距離差為1,則點(diǎn)P的軌跡方程為______.
∵動(dòng)點(diǎn)P(x,y)(x≥0)到點(diǎn)F(1,0)的距離與點(diǎn)P到y(tǒng)軸的距離差為1,
∴動(dòng)點(diǎn)P到點(diǎn)F(1,0)的距離等于它到直線x=-1的距離,
由拋物線的定義可知:點(diǎn)P的軌跡是以點(diǎn)(1,0)為焦點(diǎn),以直線x=-1為準(zhǔn)線的拋物線,
設(shè)方程為y2=2px(p>0),則
p
2
=1,∴p=2.
∴方程為y2=4x.
故答案為:y2=4x.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知橢圓 的離心率為,過的左焦點(diǎn)的直線被圓截得的弦長為.
(1)求橢圓的方程;
(2)設(shè)的右焦點(diǎn)為,在圓上是否存在點(diǎn),滿足,若存在,指出有幾個(gè)這樣的點(diǎn)(不必求出點(diǎn)的坐標(biāo));若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

設(shè)橢圓的焦點(diǎn)在軸上.
(1)若橢圓的焦距為1,求橢圓的方程;
(2)設(shè)分別是橢圓的左、右焦點(diǎn),為橢圓上的第一象限內(nèi)的點(diǎn),直線軸與點(diǎn),并且,證明:當(dāng)變化時(shí),點(diǎn)在某定直線上.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

已知A(-2,0),B(2,0),動(dòng)點(diǎn)P(x,y)滿足
PA
PB
=x2
,則動(dòng)點(diǎn)P的軌跡為(  )
A.橢圓B.雙曲線
C.拋物線D.兩條平行直線

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

如圖,梯形ABCD中,ABCD,且AB⊥平面α,AB=2BC=2CD=4,點(diǎn)P為α內(nèi)一動(dòng)點(diǎn),且∠APB=∠DPC,則P點(diǎn)的軌跡為( 。
A.直線B.圓C.橢圓D.雙曲線

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,設(shè)P是圓x2+y2=25上的動(dòng)點(diǎn),點(diǎn)D是P在x軸上的射影,M為PD上一點(diǎn),且|MD|=
4
5
|PD|
(Ⅰ)當(dāng)P在圓上運(yùn)動(dòng)時(shí),求點(diǎn)M的軌跡C的方程
(Ⅱ)求過點(diǎn)(3,0)且斜率
4
5
的直線被C所截線段的長度.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

已知圓A:(x+2)2+y2=36,圓A內(nèi)一定點(diǎn)B(2,0),圓P過B點(diǎn)且與圓A內(nèi)切,則圓心P的軌跡為( 。
A.圓B.橢圓C.直線D.以上都不對(duì)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

在平面直角坐標(biāo)系中,動(dòng)點(diǎn)P和點(diǎn)M(-2,0)、N(2,0)滿足|
MN
|•|
MP
|+
MN
NP
=0
,則動(dòng)點(diǎn)P(x,y)的軌跡方程為______.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

已知P為橢圓=1上的一點(diǎn),M,N分別為圓(x+3)2+y2=1和圓(x-3)2+y2=4上的點(diǎn),則|PM|+|PN|的最小值為________.

查看答案和解析>>

同步練習(xí)冊答案