A
分析:①若f(x)存在導(dǎo)函數(shù),根據(jù)復(fù)合函數(shù)的導(dǎo)數(shù)可知f′(2x)=2[f(2x)]′②若函數(shù)h(x)=cos
4x-sin
4x,則h′(
)=-2sin
而[h(
)]′=0,③若函數(shù)g(x)=(x-1)(x-2)…(x-2009)(x-2010),則g'(x)中含(x-2010)的將2010代入都為0,則g′(2010)=2009!④若三次函數(shù)f(x)=ax
3+bx
2+cx+d,則f'(x)=0有兩個(gè)不等的根即b
2-3ac>0,進(jìn)行逐一判定.
解答:①若f(x)存在導(dǎo)函數(shù),則f′(2x)=2[f(2x)]′,故不正確;
②若函數(shù)h(x)=cos
4x-sin
4x,則h′(
)=-2sin
=-1,而[h(
)]′=0,故不正確
③若函數(shù)g(x)=(x-1)(x-2)…(x-2009)(x-2010),則g'(x)中含(x-2010)的將2010代入都為0,則g′(2010)=2009!故正確;
④若三次函數(shù)f(x)=ax
3+bx
2+cx+d,則f'(x)=0有兩個(gè)不等的根即b
2-3ac>0,故不正確.
故選A
點(diǎn)評(píng):本題主要考查了復(fù)合函數(shù)的導(dǎo)數(shù),以及函數(shù)的極值、求值等有關(guān)知識(shí),屬于綜合題.