已知雙曲線的右焦點為,則該雙曲線的漸近線方程為       
練習冊系列答案
相關習題

科目:高中數(shù)學 來源:不詳 題型:解答題

拋物線C的方程為,過拋物線C上一點P(x0,y0)(x 0≠0)作斜率為k1,k2的兩條直線分別交拋物線C于A(x1,y1)B(x2,y2)兩點(P,A,B三點互不相同),且滿足.
(Ⅰ)求拋物線C的焦點坐標和準線方程;
(Ⅱ)設直線AB上一點M,滿足,證明線段PM的中點在y軸上;
(Ⅲ)當=1時,若點P的坐標為(1,-1),求∠PAB為鈍角時點A的縱坐標的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

(本題滿分16分)本題共有3個小題,第1小題滿分4分,第2小題滿分6分,第3小題滿分6分.
已知橢圓),其左、右焦點分別為、,且、成等比數(shù)列.
(1)求的值.
(2)若橢圓的上頂點、右頂點分別為、,求證:
(3)若為橢圓上的任意一點,是否存在過點、的直線,使軸的交點滿足?若存在,求直線的斜率;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

平面直角坐標系中,直線,,,上的兩動點,且,求使得四邊形周長最小時兩點的坐標及此時的最小周長

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

正六邊形ABCDEF的兩個頂點A、D為橢圓的兩個焦點,其余4個頂點在橢圓上,則該橢圓的離心率是                                  ()
A.                   B.
C.                   D.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

已知圓和直線,直線,都經(jīng)過圓C外
定點A(1,0).
(Ⅰ)若直線與圓C相切,求直線的方程;
(Ⅱ)若直線與圓C相交于P,Q兩點,與交于N點,且線段PQ的中點為M,
求證:為定值.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

橢圓的離心率是(    )
A.B.2C.D.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

以下四個關于圓錐曲線的命題中:
①設AB為兩個定點,k為非零常數(shù),若,則動點P的軌跡為雙曲線;
②過定圓C上一定點A作圓的動弦AB,O為坐標原點,若,則動點P的軌跡為橢圓;
③拋物線的焦點坐標是
④曲線與曲線)有相同的焦點.
其中真命題的序號為____________寫出所有真命題的序號.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

已知點A(3,2),B(-2,7),若直線y=kx-3與線段AB相交,則k的取值范圍為_____________

查看答案和解析>>

同步練習冊答案