(文科做)(本題滿分14分)如圖,在長方體
ABCDA1B1C1D1中,AD=AA1=1,AB=2,點E在棱AB上移動.
(1)證明:D1EA1D;
(2)當(dāng)EAB的中點時,求點E到面ACD1的距離;
(3)AE等于何值時,二面角D1ECD的大小為.                      

(理科做)(本題滿分14分)
如圖,在直三棱柱ABCA1B1C1中,∠ACB = 90°,CB = 1,
CA =,AA1 =,M為側(cè)棱CC1上一點,AMBA1
(Ⅰ)求證:AM⊥平面A1BC;
(Ⅱ)求二面角BAMC的大小;
(Ⅲ)求點C到平面ABM的距離.

、(文)解法一(1)∵AE⊥平面AA1DD1,A1D⊥AD1,∴D1E⊥A1D.
(2)設(shè)點E到面ACD1的距離為h,在△ACD1中,AC=CD1=,AD1=,故
(3)過D作DH⊥CE于H,連D1H、DE,則D1H⊥CE,∴∠DHD1為二面角D1—EC—D的平面角.設(shè)AE=x,則BE=2-x,

 (3)設(shè)平面D1EC的法向量
 令b="1," ∴c=2,a=2-x,∴依題意(不合,舍去),
∴AE=時,二面角D1—EC—D的大小為
 (Ⅲ)設(shè)點C到平面ABM的距離為h,易知BO =,可知SABM =· AM · BO =×   ∵VC – ABM = VM – ABC  ∴hSABM =MC ·SABC  
h =  ∴點C到平面ABM的距離為解法二:(Ⅰ)同解法一
(Ⅱ)如圖以C為原點,CACB,CC1所在直線  
分別為x軸,y軸,z軸,建立空間直角坐標(biāo)系,
A (,0,0),A1(,0,),B (0,1,0),
設(shè)M (0,0,z1)     ∵AMBA1
,即– 3 + 0 +z1 = 0,故z1 =,所以M (0,0,)    
設(shè)向量m = (x,y,z)為平面AMB的法向量,則m,m,則
,令x = 1,平面AMB的一個法向量為m = (1,),顯然向量是平面AMC的一個法向量
cos < m,易知,m所夾的角等于二面角BAMC的大小,故所求二面角的大小為45°.(Ⅲ)所求距離為:,  即點C到平面ABM的距離為
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

((13分)
如圖,在四棱錐中,底面是正方形,側(cè)棱=2,,垂足為F。
(1)求證:PA∥平面BDE。
(2)求證:PB⊥平面DEF。
(3)求二面角B—DE—F的余弦值。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(本小題滿分14分)
如圖5,在三棱柱中,側(cè)棱底面,的中點,
,.
(1)求證:平面;
(2) 求四棱錐的體積.  圖5

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,四棱錐中,底面是平行四邊形,,垂足為,上,且,的中點.

(1)求異面直線所成的角的余弦值;
(2)若是棱上一點,且,求的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

如圖,在長方體ABCD-A1B1C1D1中,AB=BC=2,AA1=1,則AC1與平面A1B1C1D1所成角的正弦值為        .

(第19題)

 
    

     (第20題)                (第21題)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

已知四棱椎的底面是邊長為6 的正方形,側(cè)棱底面,且,則該四棱椎的體積是    ▲   .

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(本小題滿分14分)
在棱長為2的正方體ABCD—A1B1C1D1中,E,F(xiàn)分別為A1D1和CC1的中點.

(Ⅰ)求證:EF//平面ACD1;
(Ⅱ)求異面直線EF與AB所成的角的余弦值;
(Ⅲ)在棱BB1上是否存在一點P,使得二面角P—AC—B的大小為30°?若存在,求出BP的長;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

在四棱錐P-ABCD中,側(cè)面PAD丄底面ABCD,側(cè)棱PA="PD" =,底面 ABCD為直角梯形,其中BC//AD,AB丄AD,AD=2AB=2BC=2,0為AD中點.

①求證PO丄平面ABCD
②求異面直線PB與CD的夾角;
③求點A到平面PCD的距離.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

若直線,則的關(guān)系是__________.

查看答案和解析>>

同步練習(xí)冊答案