若f(x)=x
2
3
-x-
1
2
,則滿足f(x)<0的x的取值范圍是
 
考點(diǎn):指、對(duì)數(shù)不等式的解法,其他不等式的解法
專題:不等式的解法及應(yīng)用
分析:直接利用已知條件轉(zhuǎn)化不等式求解即可.
解答: 解:f(x)=x
2
3
-x-
1
2
,若滿足f(x)<0,
x
2
3
x-
1
2
,
x
7
6
<1=x0
,
∵y=x
7
6
是增函數(shù),
x
7
6
<1
的解集為:(0,1).
故答案為:(0,1).
點(diǎn)評(píng):本題考查指數(shù)不等式的解法,函數(shù)的單調(diào)性的應(yīng)用,考查計(jì)算能力.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知橢圓C1
x2
a2
+
y2
b2
=1(a>b>0)經(jīng)過(guò)點(diǎn)M(1,
3
2
),且其右焦點(diǎn)與拋物線C2:y2=4x的焦點(diǎn)F重合,過(guò)點(diǎn)F且與坐標(biāo)軸不垂直的直線與橢圓交于P,Q兩點(diǎn).
(1)求橢圓C1的方程;
(2)設(shè)O為坐標(biāo)原點(diǎn),線段OF上是否存在點(diǎn)N(n,0),使得
QP
NP
=
PQ
NQ
?若存在,求出n的取值范圍;若不存在,說(shuō)明理由;
(3)過(guò)點(diǎn)P0(4,0)且不垂直于x軸的直線與橢圓交于A,B兩點(diǎn),點(diǎn)B關(guān)于x軸的對(duì)稱點(diǎn)為E,試證明:直線AE過(guò)定點(diǎn).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

以F(0,1)為圓心的圓交直線y=-1于A,B兩點(diǎn),且△FAB為等腰直角三角形,則圓F的方程是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知由樣本數(shù)據(jù)點(diǎn)集{(xi,yi)|i=1,2,…,n}求得的回歸直線方程為
y
=1.23x+0.08,且
.
x
=4.若去掉兩個(gè)數(shù)據(jù)點(diǎn)(4.1,5.7)和(3.9,4.3)后重新求得的回歸直線?的斜率估計(jì)值為1.2,則此回歸直線?的方程為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

執(zhí)行如圖的程序框圖,輸出i的值為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

關(guān)于函數(shù)f(x)=|2sinx+m|(m為常數(shù)且m∈R),有下列結(jié)論:
①m=0是函數(shù)f(x)周期為π的充要條件;
②m>0是函數(shù)f(x)周期為2π的充分不必要條件;
③存在唯一的一組常數(shù)m、k,使得函數(shù)g(x)=f(x)-k(x>0)的零點(diǎn)從小到大排列成公差為2π的等差數(shù)列;
④存在常數(shù)m、k,使得函數(shù)g(x)=f(x)-k(x>0)的零點(diǎn)從小到大排列成公差為
3
的等差數(shù)列;
⑤存在常數(shù)m、k,使得函數(shù)g(x)=f(x)(x>0)的零點(diǎn)從小到大排列成公差為
π
3
的等差數(shù)列;
其中正確結(jié)論的序號(hào)為
 
(把你認(rèn)為正確結(jié)論的序號(hào)都填上).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)f(x)=
x-3,x≥10
f[f(x+5)],x<10
,則f(6)的值為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

下列函數(shù)中,既是偶函數(shù)又在區(qū)間(-∞,0)上單調(diào)遞增的是( 。
A、y=x2
B、y=x3
C、y=tanx
D、y=
1
|x|

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

執(zhí)行如圖所示的程序框圖,若輸出的結(jié)果是26,則在①處應(yīng)填入的條件是( 。
A、K>2?B、K>3?
C、K>4?D、K>5?

查看答案和解析>>

同步練習(xí)冊(cè)答案