【題目】已知橢圓的離心率,且橢圓過點
(1)求橢圓的標準方程;
(2)設直線與交于、兩點,點在橢圓上,是坐標原點,若,判定四邊形的面積是否為定值?若為定值,求出該定值;如果不是,請說明理由.
【答案】(1);(2)是定值,其定值為.
【解析】
(1)設橢圓的焦距為,根據(jù)題意得出關于、、的方程組,求出和的值,即可得出橢圓的標準方程;
(2)對直線的斜率是否存在進行分類討論,當直線軸時,可得出直線的方程為,可求出四邊形的面積;當直線的斜率存在時,設直線的方程為,設點、,將直線的方程與橢圓的方程聯(lián)立,列出韋達定理,求出點的坐標,將點的坐標代入橢圓的方程得出,計算出以及原點到直線的距離,通過化簡計算可得出四邊形的面積為,進而得證.
(1)設橢圓的焦距為,由題意可得,解得,,
因此,橢圓的標準方程為;
(2)當直線的斜率不存在時,直線的方程為或.
若直線的方程為,聯(lián)立,可得,
此時,,四邊形的面積為,
同理,當直線的方程為時,可求得四邊形的面積也為;
當直線的斜率存在時,設直線方程是,
代人到,得,
,,,
,
,
點到直線的距離,
由,得,,
點在橢圓上,所以有,整理得,
由題意知,四邊形為平行四邊形,
平行四邊形的面積為.
故四邊形的面積是定值,其定值為.
科目:高中數(shù)學 來源: 題型:
【題目】在平面直角坐標系xoy中,以坐標原點O為極點,x軸正半軸為極軸建立極坐標系。已知曲線C的極坐標方程為,過點的直線l的參數(shù)方程為(為參數(shù)),直線l與曲線C交于M、N兩點。
(1)寫出直線l的普通方程和曲線C的直角坐標方程:
(2)若成等比數(shù)列,求a的值。
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某農戶考察三種不同的果樹苗A、B、C,經(jīng)引種試驗后發(fā)現(xiàn),引種樹苗A的自然成活率為0.8,引種樹苗B、C的自然成活率均為0.9.
(1)若引種樹苗A、B、C各10棵.
①估計自然成活的總棵數(shù);
②利用①的估計結論,從沒有自然成活的樹苗中隨機抽取兩棵,求抽到的兩棵都是樹苗A的概率;
(2)該農戶決定引種B種樹苗,引種后沒有自然成活的樹苗中有75%的樹苗可經(jīng)過人工栽培技術處理,處理后成活的概率為0.8,其余的樹苗不能成活.若每棵樹苗引種最終成活后可獲利300元,不成活的每棵虧損50元,該農戶為了獲利不低于20萬元,問至少引種B種樹苗多少棵?
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】動圓與相外切,與相內切.
(1)求動圓圓心的軌跡的方程;
(2)是動圓的半徑最小時的圓,傾斜角為且過點的直線l與相切,與軌跡交于,兩點,求的值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】《孫子算經(jīng)》是中國古代重要的數(shù)學著作,書中有一問題:“今有方物一束,外周一匝有三十二枚,問積幾何?”,該著作中提出了一種解決此問題的方法:“重置二位,左位減八,余加右位,至盡虛減一,即得.”通過對該題的研究發(fā)現(xiàn),若一束方物外周一匝的枚數(shù)是8的整數(shù)倍時,均可采用此方法求解,如圖是解決這類問題的程序框圖,若輸入,則輸出的結果為( )
A.80B.47C.79D.48
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】算籌是在珠算發(fā)明以前我國獨創(chuàng)并且有效的計算工具,為我國古代數(shù)學的發(fā)展做出了很大貢獻.在算籌計數(shù)法中,以“縱式”和“橫式”兩種方式來表示數(shù)字,如圖:
表示多位數(shù)時,個位用縱式,十位用橫式,百位用縱式,千位用橫式,以此類推,遇零則置空,如圖:
如果把5根算籌以適當?shù)姆绞饺糠湃?下面的表格中,那么可以表示的三位數(shù)的個數(shù)為( )
A.
B.
C.
D.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某生物興趣小組對冬季晝夜溫差與反季節(jié)新品種大豆發(fā)芽數(shù)之間的關系進行研究,他們分別記錄了月日至月日每天的晝夜溫差與實驗室每天顆種子的發(fā)芽數(shù),得到以下表格
該興趣小組確定的研究方案是:先從這組數(shù)據(jù)中選取組數(shù)據(jù),然后用剩下的組數(shù)據(jù)求線性回歸方程,再用被選取的組數(shù)據(jù)進行檢驗.
(1) 求統(tǒng)計數(shù)據(jù)中發(fā)芽數(shù)的平均數(shù)與方差;
(2) 若選取的是月日與月日的兩組數(shù)據(jù),請根據(jù)月日至月日的數(shù)據(jù),求出發(fā)芽數(shù)關于溫差的線性回歸方程,若由線性回歸方程得到的估計數(shù)據(jù)與所選取的檢驗數(shù)據(jù)的誤差不超過,則認為得到的線性回歸方程是可靠的,問得到的線性回歸方程是否可靠? 附:線性回歸方程中斜率和截距最小二乘估法計算公式:
,
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知橢圓的左焦點為,直線與圓交于,兩點.
(1)若直線過點,且,求被橢圓所截得的弦的長度;
(2)若已知點在橢圓上,動點滿足,請判斷點與圓的位置關系,并說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com