【題目】某校高一(2)班共有60名同學參加期末考試,現(xiàn)將其數(shù)學學科成績(均為整數(shù))分成六個分數(shù)段 ,…, ,畫出如下圖所示的部分頻率分布直方圖,請觀察圖形信息,回答下列問題:

(1)估計這次考試中數(shù)學學科成績的中位數(shù);

(2)現(xiàn)根據(jù)本次考試分數(shù)分成下列六段(從低分段到高分段依次為第一組、第二組、…、第六組)為提高本班數(shù)學整體成績,決定組與組之間進行幫扶學習.若選出的兩組分數(shù)之差大于30分(以分數(shù)段為依據(jù),不以具體學生分數(shù)為依據(jù)),則稱這兩組為“最佳組合”,試求選出的兩組為“最佳組合”的概率.

【答案】(1) 中位數(shù)為;(2) .

【解析】試題分析:(1)根據(jù)頻率分布直方圖,利用中位數(shù)的計算方法,即可得到中位數(shù)的值;

(2)列出所有的組合數(shù),得到基本事件的個數(shù),再根據(jù)古典概型的概率計算公式,即可求解選出的兩組為“最佳組合”的概率.

試題解析:

(1)中位數(shù)在.中位數(shù)為

(2)所有的組合數(shù):(1,2),(1,3),(1,4),(1,5),(1,6)

(2,3),(2,4),(2,5),(2,6)

(3,4),(3,5),(3,6)

(4,5),(4,6)

(5,6)

,

符合最佳組合條件的有:(1,4),(1,5),(1,6),(2,5),(2,6),(3,6)

,所以.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】如圖,在平面直角坐標系中,已知以為圓心的圓及其上一點.

(1)設圓軸相切,與圓外切,且圓心在直線上,求圓的標準方程;

(2)設平行于的直線與圓相交于,兩點,且,求直線的方程;

(3)設點滿足:存在圓上的兩點,使得,求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】選修4-5:不等式選講

已知不等式對任意實數(shù)恒成立.

(Ⅰ)求實數(shù)的最小值;

(Ⅱ)若,且滿足,求證:

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】設正項數(shù)列{an}的前n項和為Sn , 且滿足4Sn=an2+2an﹣3(n∈N*),則a2016=(
A.4029
B.4031
C.4033
D.4035

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】正項數(shù)列{an}的前n項和為Sn , 且2Sn=an2+an(n∈N*),設cn=(﹣1)n ,則數(shù)列{cn}的前2017項的和為

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知橢圓的長半軸為,短半軸為.橢圓的兩個焦點分別為,,離心率為方程的一根,長半軸為,短半軸為.若,.

(Ⅰ)求橢圓的方程;

(Ⅱ)如圖,過橢圓上且位于軸左側的一點作圓的兩條切線,分別交軸于點、.試推斷是否存在點,使?若存在,求出點的坐標;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】選修4-4:坐標系與參數(shù)方程

平面直角坐標系中,直線的參數(shù)方程為為參數(shù)),曲線的普通方程為,以坐標原點為極點,的正半軸為極軸建立極坐標系.

I)求直線的極坐標方程與曲線的參數(shù)方程;

II設點D在曲線上,曲線D處的切線與直線垂直,確定D的坐標.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知橢圓經(jīng)過點,且離心率為.

(1)求橢圓的方程;

(2)設點軸上的射影為點,過點的直線與橢圓相交于, 兩點,且,求直線的方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知橢圓的離心率為,且過點.

(1)求橢圓的方程;

(2)過點且斜率大于0的直線與橢圓相交于點, ,直線 軸相交于, 兩點,求的取值范圍.

查看答案和解析>>

同步練習冊答案