【題目】已知點(diǎn)F1為橢圓E(a>b>0)的左焦點(diǎn),且兩焦點(diǎn)與短軸的一個(gè)頂點(diǎn)構(gòu)成一個(gè)等腰直角三角形,直線與橢圓E有且僅有一個(gè)交點(diǎn)M.

1)求橢圓E的方程;

2)設(shè)直線y軸交于P,過點(diǎn)P的直線l與橢圓E交于不同的兩點(diǎn)A,B,若λ|PM|2|PA|·|PB|,求實(shí)數(shù)λ的取值范圍.

【答案】1;(2[,1).

【解析】

(1)由已知為等腰直角三角形可知,直線和橢圓相切方程聯(lián)立,判別式為0,即可求得,進(jìn)而得出結(jié)果;

(2)由(1)求得坐標(biāo),得到的值,當(dāng)直線軸垂直時(shí),直接由,求得λ值;當(dāng)直線軸不垂直時(shí),設(shè)直線的方程為ykx3,聯(lián)立直線方程與橢圓方程,利用判別式大于0求得的取值范圍,再由根與系數(shù)的關(guān)系,結(jié)合,把λ用含有的表達(dá)式表示,則實(shí)數(shù)λ的取值范圍可求.

解:⑴∵為等腰直角三角形 ,則橢圓E方程化為:

∵直線與橢圓E有且僅有一個(gè)交點(diǎn)M. ,即

∴橢圓E方程為:

⑵由(1)M,直線y軸交于P,

方法一:①當(dāng)直線lx軸垂直時(shí),|PA|·|PB|(3)×(3)6,

②當(dāng)直線lx軸不垂直時(shí),設(shè)直線l的方程為ykx3,A(x1y1),B(x2y2),

,

,即,x1x2

|PA|·|PB|

=

,即,則

綜上所述,λ的取值范圍是[,1)

方法二:設(shè)直線l的參數(shù)方程為t為參數(shù)),

代入橢圓E的方程得,,即

設(shè)A,B對(duì)應(yīng)的參數(shù)分別為,,則

|PA|·|PB|

,即,則

綜上所述,λ的取值范圍是[1)

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在直角坐標(biāo)系xOy中,曲線C的參數(shù)方程為m為參數(shù)),以坐標(biāo)原點(diǎn)O為極點(diǎn),x軸的正半軸為極軸建立極坐標(biāo)系,直線的極坐標(biāo)方程為

1)求曲線C和直線的直角坐標(biāo)系方程;

2)已知直線與曲線C相交于AB兩點(diǎn),求的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某學(xué)校實(shí)行自主招生,參加自主招生的學(xué)生從8個(gè)試題中隨機(jī)挑選出4個(gè)進(jìn)行作答,至少答對(duì)3個(gè)才能通過初試已知甲、乙兩人參加初試,在這8個(gè)試題中甲能答對(duì)6個(gè),乙能答對(duì)每個(gè)試題的概率為,且甲、乙兩人是否答對(duì)每個(gè)試題互不影響.

1)試通過概率計(jì)算,分析甲、乙兩人誰通過自主招生初試的可能性更大;

2)若答對(duì)一題得5分,答錯(cuò)或不答得0分,記乙答題的得分為,求的分布列及數(shù)學(xué)期望和方差.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖所示的幾何體中,四邊形為菱形, , , , ,平面平面, 的中點(diǎn), 為平面內(nèi)任一點(diǎn).

(1)在平面內(nèi),過點(diǎn)是否存在直線使?如果不存在,請(qǐng)說明理由,如果存在,請(qǐng)說明作法;

(2)過, 三點(diǎn)的平面將幾何體截去三棱錐,求剩余幾何體的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,四棱錐的底面是矩形,底面ABCD,PBC邊的中點(diǎn),SB與平面ABCD所成的角為,且,

1求證:平面SAP;

2求二面角的余弦的大小.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知為拋物線上一點(diǎn),斜率分別為,的直線PA,PB分別交拋物線于點(diǎn)AB(不與點(diǎn)P重合).

1)證明:直線AB的斜率為定值;

2)若△ABP的內(nèi)切圓半徑為.

i)求△ABP的周長(zhǎng)(用k表示);

ii)求直線AB的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】,則定義直線為曲線,的“分界直線”.已知,則的“分界直線”為____

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某基地蔬菜大棚采用無土栽培方式種植各類蔬菜.根據(jù)過去50周的資料顯示,該基地周光照量(小時(shí))都在30小時(shí)以上,其中不足50小時(shí)的有5周,不低于50小時(shí)且不超過70小時(shí)的有35周,超過70小時(shí)的有10周.根據(jù)統(tǒng)計(jì),該基地的西紅柿增加量(千克)與使用某種液體肥料的質(zhì)量(千克)之間的關(guān)系如圖所示.

(1)依據(jù)上圖,是否可用線性回歸模型擬合的關(guān)系?請(qǐng)計(jì)算相關(guān)系數(shù)并加以說明(精確到0.01).(若,則線性相關(guān)程度很高,可用線性回歸模型擬合)

(2)蔬菜大棚對(duì)光照要求較大,某光照控制儀商家為該基地提供了部分光照控制儀,但每周光照控制儀運(yùn)行臺(tái)數(shù)受周光照量限制,并有如下關(guān)系:

周光照量(單位:小時(shí))

光照控制儀運(yùn)行臺(tái)數(shù)

3

2

1

若某臺(tái)光照控制儀運(yùn)行,則該臺(tái)光照控制儀周利潤(rùn)為3000元;若某臺(tái)光照控制儀未運(yùn)行,則該臺(tái)光照控制儀周虧損1000元.以頻率作為概率,商家欲使周總利潤(rùn)的均值達(dá)到最大,應(yīng)安裝光照控制儀多少臺(tái)?

附:相關(guān)系數(shù)公式,

參考數(shù)據(jù):,.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】若直線l的極坐標(biāo)方程為,曲線C的參數(shù)方程為(為參數(shù)).

若曲線上存在M,N兩點(diǎn)關(guān)于直線l對(duì)稱,求實(shí)數(shù)m的值;

若直線與曲線相交于PQ兩點(diǎn),且,求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案