(2012•海淀區(qū)一模)已知函數(shù)f(x)=e-kx(x2+x-
1k
)(k<0)

(Ⅰ)求f(x)的單調(diào)區(qū)間;
(Ⅱ)是否存在實數(shù)k,使得函數(shù)f(x)的極大值等于3e-2?若存在,求出k的值;若不存在,請說明理由.
分析:(Ⅰ)求出f'(x))=-e-kx(kx-2)(x+1)(k<0),令f'(x)=0,解得:x=-1或x=
2
k
.按兩根-1,
2
k
的大小關系分三種情況討論即可;
(Ⅱ)由(Ⅰ)分情況求出函數(shù)f(x)的極大值,令其為3e-2,然后解k即可,注意k的取值范圍;
解答:解:(Ⅰ)f(x)的定義域為R,
f′(x)=-ke-kx(x2+x-
1
k
)+e-kx(2x+1)=e-kx[-kx2+(2-k)x+2]
,即 f'(x)=-e-kx(kx-2)(x+1)(k<0).
令f'(x)=0,解得:x=-1或x=
2
k

①當k=-2時,f'(x)=2e2x(x+1)2≥0,
故f(x)的單調(diào)遞增區(qū)間是(-∞,+∞);
②當-2<k<0時,f(x),f'(x)隨x的變化情況如下:
x (-∞,
2
k
)
2
k
(
2
k
,-1)
-1 (-1,+∞)
f'(x) + 0 - 0 +
f(x) 極大值 極小值
所以,函數(shù)f(x)的單調(diào)遞增區(qū)間是(-∞,
2
k
)
和(-1,+∞),單調(diào)遞減區(qū)間是(
2
k
,-1)

③當k<-2時,f(x),f'(x)隨x的變化情況如下:
x (-∞,-1) -1 (-1,
2
k
)
2
k
(
2
k
,+∞)
f'(x) + 0 - 0 +
f(x) 極大值 極小值
所以,函數(shù)f(x)的單調(diào)遞增區(qū)間是(-∞,-1)和(
2
k
,+∞)
,單調(diào)遞減區(qū)間是(-1,
2
k
)

綜上,當k=-2時,f(x)的單調(diào)遞增區(qū)間是(-∞,+∞);當-2<k<0時,f(x)的單調(diào)遞增區(qū)間是(-∞,
2
k
)
和(-1,+∞),單調(diào)遞減區(qū)間是(
2
k
,-1)
;
當k<-2時,f(x)的單調(diào)遞增區(qū)間是(-∞,-1)和(
2
k
,+∞)
,單調(diào)遞減區(qū)間是(-1,
2
k
)

(Ⅱ) ①當k=-2時,f(x)無極大值.
②當-2<k<0時,f(x)的極大值為f(
2
k
)=e-2(
4
k2
+
1
k
)
,
e-2(
4
k2
+
1
k
)=3e-2
,即
4
k2
+
1
k
=3
,解得 k=-1或k=
4
3
(舍).
③當k<-2時,f(x)的極大值為f(-1)=-
ek
k

因為 ek<e-20<-
1
k
1
2
,所以 -
ek
k
1
2
e-2

因為 
1
2
e-2<3e-2
,所以 f(x)的極大值不可能等于3e-2
綜上所述,當k=-1時,f(x)的極大值等于3e-2
點評:本題考查利用導數(shù)研究函數(shù)的單調(diào)性及求函數(shù)極值問題,考查分類討論思想,考查學生邏輯推理能力,屬中檔題.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

(2012•海淀區(qū)一模)執(zhí)行如圖所示的程序框圖,輸出的k值是(  )

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2012•海淀區(qū)一模)從甲、乙等5個人中選出3人排成一列,則甲不在排頭的排法種數(shù)是(  )

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2012•海淀區(qū)一模)某學校隨機抽取部分新生調(diào)查其上學所需時間(單位:分鐘),并將所得數(shù)據(jù)繪制成頻率分布直方圖(如圖),其中,上學所需時間的范圍是[0,100],樣本數(shù)據(jù)分組為[0,20),[20,40),[40,60),[60,80),[80,100].
(Ⅰ)求直方圖中x的值;
(Ⅱ)如果上學所需時間不少于1小時的學生可申請在學校住宿,請估計學校600名新生中有多少名學生可以申請住宿;
(Ⅲ)從學校的新生中任選4名學生,這4名學生中上學所需時間少于20分鐘的人數(shù)記為X,求X的分布列和數(shù)學期望.(以直方圖中新生上學所需時間少于20分鐘的頻率作為每名學生上學所需時間少于20分鐘的概率)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2012•海淀區(qū)一模)過雙曲線
x2
9
-
y2
16
=1
的右焦點,且平行于經(jīng)過一、三象限的漸近線的直線方程是( 。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2012•海淀區(qū)一模)復數(shù)
a+2i1-i
在復平面內(nèi)所對應的點在虛軸上,那么實數(shù)a=
2
2

查看答案和解析>>

同步練習冊答案