在極坐標(biāo)系中,曲線(xiàn)C1方程為ρ=2sin(θ+),曲線(xiàn)C2:方程為ρsin(θ+)=4.以極點(diǎn)O為原點(diǎn),極軸方向?yàn)閤軸正向建立直角坐標(biāo)系xOy.
(1)求曲線(xiàn)C1,C2的直角坐標(biāo)方程;
(2)設(shè)A、B分別是C1,C2上的動(dòng)點(diǎn),求|AB|的最小值.
【答案】分析:(1)先將曲線(xiàn)C1及曲線(xiàn)C2的極坐標(biāo)方程展開(kāi),然后再利用公式,即可把極坐標(biāo)方程化為普通方程.
(2)可先求出圓心到直線(xiàn)的距離,再減去其半徑即為所求的最小值.
解答:解:(Ⅰ)曲線(xiàn)C1的極坐標(biāo)方程化為ρ=sinθ+cosθ,
兩邊同乘以ρ,得ρ2=ρsinθ+ρcosθ,
則曲線(xiàn)C1的直角坐標(biāo)方程為x2+y2=y+x,即x2+y2-x-y=0.
曲線(xiàn)C2的極坐標(biāo)方程化為ρsinθ+ρcosθ=4,
則曲線(xiàn)C2的直角坐標(biāo)方程為y+x=4,即x+y-8=0.
(Ⅱ)將曲線(xiàn)C1的直角坐標(biāo)方程化為(x-2+(y-2=1,
它表示以(,)為圓心,以1為半徑的圓.
該圓圓心到曲線(xiàn)C2即直線(xiàn)x+y-8=0的距離
d==3,
所以|AB|的最小值為3-1=2.
點(diǎn)評(píng):掌握極坐標(biāo)方程化為普通方程的公式和點(diǎn)到直線(xiàn)的距離公式及轉(zhuǎn)化思想是解題的關(guān)鍵.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在極坐標(biāo)系中,曲線(xiàn)C的極坐標(biāo)方程為ρ=2
2
sin(θ-
π
4
)
,以極點(diǎn)為原點(diǎn),極軸為x軸的正半軸建立平面直角坐標(biāo)系,直線(xiàn)l的參數(shù)方程為
x=1+
4
5
t
y=-1-
3
5
t
(t為參數(shù)),求直線(xiàn)l被曲線(xiàn)C所截得的弦長(zhǎng).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在A(yíng)、B、C、D四小題中只能選做2題,每小題10分,共計(jì)20分,請(qǐng)?jiān)诖痤}紙指定區(qū)域內(nèi)作答,解答應(yīng)寫(xiě)出文字說(shuō)明、證明過(guò)程或演算步驟.
A.選修4-1:(幾何證明選講)
如圖,從O外一點(diǎn)P作圓O的兩條切線(xiàn),切點(diǎn)分別為A,B,
AB與OP交于點(diǎn)M,設(shè)CD為過(guò)點(diǎn)M且不過(guò)圓心O的一條弦,
求證:O,C,P,D四點(diǎn)共圓.
B.選修4-2:(矩陣與變換)
已知二階矩陣M有特征值λ=3及對(duì)應(yīng)的一個(gè)特征向量e1=[
 
1
1
],并且矩陣M對(duì)應(yīng)的變換將點(diǎn)(-1,2)變換成(9,15),求矩陣M.
C.選修4-4:(坐標(biāo)系與參數(shù)方程)
在極坐標(biāo)系中,曲線(xiàn)C的極坐標(biāo)方程為p=2
2
sin(θ-
π
4
),以極點(diǎn)為原點(diǎn),極軸為x軸的正半軸建立平面直角坐標(biāo)系,直線(xiàn)l的參數(shù)方程為
x=1+
4
5
t
y=-1-
3
5
t
(t為參數(shù)),求直線(xiàn)l被曲線(xiàn)C所截得的弦長(zhǎng).
D.選修4-5(不等式選講)
已知實(shí)數(shù)x,y,z滿(mǎn)足x+y+z=2,求2x2+3y2+z2的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(坐標(biāo)系與參數(shù)方程選做題)在極坐標(biāo)系中,曲線(xiàn)C的極坐標(biāo)方程為ρsin(θ-
π
6
)=3,點(diǎn)A(2,
π
3
)到曲線(xiàn)C上點(diǎn)的距離的最小值A(chǔ)P0=
2
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

選修4-4:坐標(biāo)系與參數(shù)方程
在極坐標(biāo)系中,曲線(xiàn)C極坐標(biāo)方程為ρ=2
2
sin(θ-
π
4
)
,以極點(diǎn)為原點(diǎn),極軸為x軸的正半軸建立平面直角坐標(biāo)系,直線(xiàn)l的參數(shù)方程為
x=1+
4
5
t
y=-1-
3
5
t
(t為參數(shù)).
求:(1)曲線(xiàn)C和直線(xiàn)l的普通方程;
(2)求直線(xiàn)l被曲線(xiàn)C所截得的弦長(zhǎng).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在平面直角坐標(biāo)系中,已知直線(xiàn)l過(guò)點(diǎn)A(2,0),傾斜角為
π2

(1)寫(xiě)出直線(xiàn)l的參數(shù)方程;
(2)若有一極坐標(biāo)系分別以直角坐標(biāo)系的原點(diǎn)和x軸非負(fù)半軸為原點(diǎn)和極軸,并且兩坐標(biāo)系的單位長(zhǎng)度相等,在極坐標(biāo)系中有曲線(xiàn)C:ρ2cos2θ=1,求直線(xiàn)l截曲線(xiàn)C所得的弦BC的長(zhǎng)度.

查看答案和解析>>

同步練習(xí)冊(cè)答案