若球的大圓的面積擴大為原來的3倍,則它的體積擴大為原來的                (     )
A.3倍B.27倍C.3D.
C

分析:直接應(yīng)用公式化簡可得球的半徑擴大的倍數(shù),然后求出體積擴大的倍數(shù).
解:設(shè)原球的半徑R
∵球的大圓的面積擴大為原來的3倍,
則半徑擴大倍,
∴體積擴大3
故選C.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

在直三棱柱中,ACB=90°, 的中點,的中點。
(1)求證:MN∥平面 ;
(2)求點到平面BMC的距離;
(3)求二面角­1的大小。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(12分)如圖,在棱長為2的正方體ABCD -A1B1C1D1中,E、F分別為A1D1CC1 的中點.

(1)求證:EF∥平面ACD1
(2)求三棱錐E-ACD1的體積與正方體
ABCD -A1B1C1D1的體積之比.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(本小題滿分14分
如圖,已知正三棱柱的底面邊長是、E是、BC的中點,AE=DE

(1)求此正三棱柱的側(cè)棱長;
(2)求正三棱柱表面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(本小題滿分12分)
如圖所示,在正三棱柱中,底面邊長為,側(cè)棱長為,是棱的中點.

 

 
(Ⅰ)求證:平面;

(Ⅱ)求二面角的大小;
(Ⅲ)求點到平面的距離.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(本小題滿分14分)
如圖:在四棱錐中,底面ABCD是菱形,平面ABCD,點M,N分別為BC,PA的中點,且
(I)證明:平面AMN;
(II)求三棱錐N的體積;
(III)在線段PD上是否存在一點E,使得平面ACE;若存在,求出PE的長,若不存在,說明理由。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

已知長方體的全面積為,其條棱的長度之和為,則這個長方體的一條
對角線長為(    ).
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(本題滿分14分,第(1)小題6分,第(2)小題8分)
四棱錐P-ABCD中,PD⊥平面ABCD,PA與平面ABCD所成的角為60,在四邊形ABCD中,∠ADC=∠DAB=90,AB=4,CD=1,AD=2.

(1)求四棱錐P-ABCD的體積;
(2)求異面直線PA與BC所成的角.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

如圖三棱柱中,側(cè)棱與底面成角,⊥底面, ⊥側(cè)面,且,,,則頂點到棱的距離是__________.

查看答案和解析>>

同步練習(xí)冊答案