【題目】如圖所示,過點(diǎn)P分別做圓O的切線PA、PB和割線PCD,弦BE交CD于F,滿足P、B、F、A四點(diǎn)共圓.
(Ⅰ)證明:AE∥CD;
(Ⅱ)若圓O的半徑為5,且PC=CF=FD=3,求四邊形PBFA的外接圓的半徑.

【答案】( I)證明:連接AB.
∵P、B、F、A四點(diǎn)共圓,∴∠PAB=∠PFB.
又PA與圓O切于點(diǎn)A,∴∠PAB=∠AEB,
∴∠PFB=∠AEB∴AE∥CD.
( II)解:因?yàn)镻A、PB是圓O的切線,所以P、B、O、A四點(diǎn)共圓,
由△PAB外接圓的唯一性可得P、B、F、A、O共圓,
四邊形PBFA的外接圓就是四邊形PBOA的外接圓,∴OP是該外接圓的直徑.
由切割線定理可得PA2=PCPD=3×9=27

∴四邊形PBFA的外接圓的半徑為

【解析】(Ⅰ)連接AB,利用P、B、F、A四點(diǎn)共圓,PA與圓O切于點(diǎn)A,得出兩組角相等,即可證明:AE∥CD;(Ⅱ)四邊形PBFA的外接圓就是四邊形PBOA的外接圓,OP是該外接圓的直徑,由切割線定理可得PA,即可求四邊形PBFA的外接圓的半徑.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù) ,且上單調(diào)遞增,且函數(shù)的圖象恰有兩個(gè)不同的交點(diǎn),則實(shí)數(shù)的取值范圍是( )

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】程序框圖如圖,當(dāng)輸入x為2016時(shí),輸出的y的值為(

A.
B.1
C.2
D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知直線l的參數(shù)方程為(t為參數(shù))曲線C的參數(shù)方程為,為參數(shù),以坐標(biāo)原點(diǎn)為極點(diǎn),x軸的正半軸為極軸建立極坐標(biāo)系,點(diǎn)P的極坐標(biāo)為

)求直線l以及曲線C的極坐標(biāo)方程;

(Ⅱ)設(shè)直線l與曲線C交于AB兩點(diǎn),求三角形PAB的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】市某機(jī)構(gòu)為了調(diào)查該市市民對(duì)我國申辦2034年足球世界杯的態(tài)度,隨機(jī)選取了位市民進(jìn)行調(diào)查,調(diào)查結(jié)果統(tǒng)計(jì)如下:

不支持

支持

合計(jì)

男性市民

女性市民

合計(jì)

(1)根據(jù)已知數(shù)據(jù)把表格數(shù)據(jù)填寫完整;

(2)利用(1)完成的表格數(shù)據(jù)回答下列問題:

(i)能否有的把握認(rèn)為支持申辦足球世界杯與性別有關(guān);

(ii)已知在被調(diào)查的支持申辦足球世界杯的男性市民中有位退休老人,其中位是教師,現(xiàn)從這位退體老人中隨機(jī)抽取人,求至多有位老師的概率.

參考公式:,其中.

參考數(shù)據(jù):

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】求經(jīng)過點(diǎn)且分別滿足下列條件的直線的一般式方程.

(1)傾斜角為45°;

(2)在軸上的截距為5;

(3)在第二象限與坐標(biāo)軸圍成的三角形面積為4.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】我國古代著名的周髀算經(jīng)中提到:凡八節(jié)二十四氣,氣損益九寸九分六分分之一;冬至晷長一丈三尺五寸,夏至晷長一尺六寸意思是:一年有二十四個(gè)節(jié)氣,每相鄰兩個(gè)節(jié)氣之間的日影長度差為分;且“冬至”時(shí)日影長度最大,為1350分;“夏至”時(shí)日影長度最小,為160分則“立春”時(shí)日影長度為  

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】扇形AOB中心角為,所在圓半徑為,它按如圖()()兩種方式有內(nèi)接矩形CDEF

(1)矩形CDEF的頂點(diǎn)C、D在扇形的半徑OB上,頂點(diǎn)E在圓弧AB上,頂點(diǎn)F在半徑OA上,設(shè)

(2)點(diǎn)M是圓弧AB的中點(diǎn),矩形CDEF的頂點(diǎn)DE在圓弧AB上,且關(guān)于直線OM對(duì)稱,頂點(diǎn)C、F分別在半徑OBOA上,設(shè);

試研究(1)(2)兩種方式下矩形面積的最大值,并說明兩種方式下哪一種矩形面積最大?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某校200名學(xué)生的數(shù)學(xué)期中考試成績頻率分布直方圖如圖所示,其中成績分組區(qū)間是,,,,.

1)求圖中的值;

2)根據(jù)頻率分布直方圖,估計(jì)這200名學(xué)生的平均分;

3)若這200名學(xué)生的數(shù)學(xué)成績中,某些分?jǐn)?shù)段的人數(shù)與英語成績相應(yīng)分?jǐn)?shù)段的人數(shù)之比如下表所示,求英語成績?cè)?/span>的人數(shù).

分?jǐn)?shù)段

1:2

2:1

6:5

1:2

1:1

查看答案和解析>>

同步練習(xí)冊(cè)答案