已知函數(shù).
(1)若函數(shù)在區(qū)間上存在極值點(diǎn),求實(shí)數(shù)a的取值范圍;
(2)如果當(dāng)時(shí),不等式恒成立,求實(shí)數(shù)k的取值范圍;
(1) (2)
解析試題分析:(1)對函數(shù)求導(dǎo),求出極值點(diǎn),范圍在內(nèi),得到不等式關(guān)系,解不等式即可;(2)要對恒成立問題轉(zhuǎn)化,轉(zhuǎn)化為求最值問題,
令,求出在的最小值.
試題解析:(1)當(dāng)x>0時(shí),,有
;
所以在(0,1)上單調(diào)遞增,在上單調(diào)遞減,函數(shù)在處取得唯一的極值.由題意,且,解得所求實(shí)數(shù)的取值范圍為.
(2)當(dāng)時(shí),
令,由題意,在上恒成立
令,則,當(dāng)且僅當(dāng)時(shí)取等號.
所以在上單調(diào)遞增,.
因此, 在上單調(diào)遞增,.所以.
考點(diǎn):導(dǎo)數(shù)運(yùn)算,化歸思想.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
設(shè)函數(shù)f(x)=x3﹣x2﹣2x﹣.
(1)求函數(shù)f(x)的單調(diào)遞增、遞減區(qū)間;
(2)當(dāng)x∈[﹣1,1]時(shí),f(x)<m恒成立,求實(shí)數(shù)m的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù)().
(Ⅰ)若函數(shù)在定義域內(nèi)單調(diào)遞增,求實(shí)數(shù)的取值范圍;
(Ⅱ)若,且關(guān)于的方程在上恰有兩個(gè)不等的實(shí)根,求實(shí)數(shù)的取值范圍;
(Ⅲ)設(shè)各項(xiàng)為正數(shù)的數(shù)列滿足,(),求證:.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知二次函數(shù)在處取得極值,且在點(diǎn)處的切線與直線平行.
(1)求的解析式;
(2)求函數(shù)的單調(diào)遞增區(qū)間及極值。
(3)求函數(shù)在的最值。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
設(shè)函數(shù)(),其導(dǎo)函數(shù)為.
(1)當(dāng)時(shí),求的單調(diào)區(qū)間;
(2)當(dāng)時(shí),,求證:.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
設(shè)是函數(shù)的兩個(gè)極值點(diǎn).
(1)試確定常數(shù)和的值;
(2)試判斷是函數(shù)的極大值點(diǎn)還是極小值點(diǎn),并求出相應(yīng)極值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com