【題目】在空間四邊形ABCD中,平面ABD⊥平面BCD,且DA⊥平面ABC,則△ABC的形狀是(
A.銳角三角形
B.直角三角形
C.鈍角三角形
D.不能確定

【答案】B
【解析】解答:作AE⊥BD,交BD于E,∵平面ABD⊥平面BCD
∴AE⊥面BCD,BC面BCD
∴AE⊥BC,而DA⊥平面ABC,BC平面ABC
∴DA⊥BC,又∵AE∩AD=A
∴BC⊥面ABD,而AB面ABD
∴BC⊥AB即△ABC為直角三角形
故選B.

分析:作AE⊥BD,交BD于E,根據(jù)平面與平面垂直的性質(zhì)定理可知AE⊥面BCD,再根據(jù)線面垂直的判定定理可知BC⊥面ABD,從而得到△ABC為直角三角形.
【考點精析】認真審題,首先需要了解直線與平面垂直的性質(zhì)(垂直于同一個平面的兩條直線平行),還要掌握平面與平面垂直的性質(zhì)(兩個平面垂直,則一個平面內(nèi)垂直于交線的直線與另一個平面垂直)的相關知識才是答題的關鍵.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】已知f(x)是定義在(0,+∞)上的增函數(shù),且滿足f(xy)=f(x)+f(y),f(2)=1.
(1)求f(4)與f(8)的值;
(2)解不等式f(x)﹣f(x﹣2)>3.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知 、 是兩兩不等的實數(shù),點 , ,點 , ,則直線 的傾斜角為(
A.30°
B.45°
C.60°
D.135°

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,在底面半徑和高均為4的圓錐中,AB、CD是底面圓O的兩條互相垂直的直徑,E是母線PB的中點,若過直徑CD與點E的平面與圓錐側面的交線是以E為頂點的拋物線的一部分,則該拋物線的焦點到圓錐頂點P的距離為

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某商場對甲、乙兩種品牌的商品進行為期100天的營銷活動,為調(diào)查者100天的日銷售情況,隨機抽取了10天的日銷售量(單位:件)作為樣本,樣本數(shù)據(jù)的莖葉圖如圖,若日銷量不低于50件,則稱當日為“暢銷日”.

(1)現(xiàn)從甲品牌日銷量大于40且小于60的樣本中任取兩天,求這兩天都是“暢銷日”的概率;

(2)用抽取的樣本估計這100天的銷售情況,請完成這兩種品牌100天銷量的列聯(lián)表,并判斷是否有的把握認為品牌與“暢銷日”天數(shù)有關.

附: (其中

0.050

0.010

0.001

3.841

6.635

10.828

暢銷日天數(shù)

非暢銷日天數(shù)

合計

甲品牌

乙品牌

合計

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】EC垂直Rt△ABC的兩條直角邊,D是斜邊AB的中點,AC=6,BC=8,EC=12,則DE的長為

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知橢圓的右焦點,過點且與坐標軸不垂直的直線與橢圓交于兩點,當直線經(jīng)過橢圓的一個頂點時其傾斜角恰好為

1求橢圓的方程

2為坐標原點,線段上是否存在點使得?若存在,求出實數(shù)的取值范圍;若不存在,說明理由

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某幾何體的三視圖的形狀、大小如圖所示.
(1)求該幾何體的體積;
(2)設點D、E分別在線段AC、BC上,且DE∥平面ABB1A1 , 求證:DE∥A1B1

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某校對高三年級的學生進行體檢,現(xiàn)將高三男生的體重(單位:㎏)數(shù)據(jù)進行整理后分成五組,并繪制頻率分布直方圖(如圖所示).根據(jù)一般標準,高三男生的體重超過65㎏屬于偏胖,低于55㎏屬于偏瘦,已知圖中從左到右第一、第三、第四、第五小組的頻率分別為0.25、0.20、0.10、0.05,第二小組的頻率數(shù)為400,則該校高三年級的男生總數(shù)和體重正常的頻率分別為(

A.1000,0.50
B.800,0.50
C.1000,0.60
D.800,0.60

查看答案和解析>>

同步練習冊答案