已知函數(shù)。

(1)求的單調(diào)區(qū)間;

(2)若在區(qū)間上的最小值為e,求k的值。

 

(1)當時,是函數(shù)的單調(diào)增區(qū)間;當時,是函數(shù)的單調(diào)遞減區(qū)間,是函數(shù)的單調(diào)遞減區(qū)間。(2);

【解析】

試題分析:(1)求單調(diào)區(qū)間要求導數(shù),令導函數(shù)大于0得增區(qū)間,導函數(shù)小于0得減區(qū)間,對于含參數(shù)的要對參數(shù)進行討論,本題求導函數(shù)得中要把、、三種情況進行討論;(2)利用(1)問中求得的單調(diào)區(qū)間求最值,在求最值的時候要對的范圍進一步的討論,在區(qū)間進行分類討論。

試題解析:【解析】
(1)。 3分

時,,函數(shù)在R上是增函數(shù)。

時,在區(qū)間,函數(shù)在R上是增函數(shù)。 5分

時,解,得,或。解,得。

所以函數(shù)在區(qū)間上是增函數(shù),在區(qū)間上是減函數(shù)。

綜上,當時,是函數(shù)的單調(diào)增區(qū)間;當時,是函數(shù)的單調(diào)遞減區(qū)間,是函數(shù)的單調(diào)遞減區(qū)間。7分

(2)當時,函數(shù)在R上是增函數(shù),

所以在區(qū)間上的最小值為

依題意,,解得,符合題意。 8分

,即時,函數(shù)在區(qū)間上是減函數(shù)。

所以在區(qū)間上的最小值為,

,得,不符合題意。 9分

,即時,函數(shù)在區(qū)間上是減函數(shù),在區(qū)間上是增函數(shù)。

所以在區(qū)間上的最小值為, 10分

,即,

, 11分

,則在區(qū)間,在區(qū)間,

所以在區(qū)間上的最小值為, 12分

, 13分

所以在區(qū)間上無解,

所以在區(qū)間上無解, 14分

綜上,。

考點:函數(shù)單調(diào)性及最值問題;

 

練習冊系列答案
相關習題

科目:高中數(shù)學 來源:2014-2015學年河南省富洲部高二上學期9月考試數(shù)學試卷(解析版) 題型:解答題

:實數(shù)滿足,其中,

:實數(shù)滿足

(1)若為真,求實數(shù)的取值范圍;

(2)若的充分不必要條件,求實數(shù)的取值范圍.

 

查看答案和解析>>

科目:高中數(shù)學 來源:2014-2015學年河南省洛陽市高一10月月考數(shù)學試卷(解析版) 題型:選擇題

函數(shù)的定義域為( )

A. B.

C. D.

 

查看答案和解析>>

科目:高中數(shù)學 來源:2015屆北京市西城區(qū)高二下學期期末考試理科數(shù)學試卷(解析版) 題型:填空題

已知某一隨機變量X的分布列如下:

X

3

b

8

P

0.2

0.5

a

 

,則a=__________;b=__________。

 

 

查看答案和解析>>

科目:高中數(shù)學 來源:2015屆北京市西城區(qū)高二下學期期末考試理科數(shù)學試卷(解析版) 題型:選擇題

從0,1,2,3中選取三個不同的數(shù)字組成一個三位數(shù),則不同的三位數(shù)有( )

A.24個 B.20個 C.18個 D.15個

 

查看答案和解析>>

科目:高中數(shù)學 來源:2015屆北京市西城區(qū)高二下學期期末考試文科數(shù)學試卷(解析版) 題型:解答題

已知集合

(1)求集合;

(2)若,求實數(shù)a的取值范圍。

 

查看答案和解析>>

科目:高中數(shù)學 來源:2014-2015學年河南省西區(qū)高一9月月考數(shù)學試卷(解析版) 題型:填空題

某班有學生55人,其中體育愛好者43人,音樂愛好者34人,還有4人既不愛好體育也不愛好音樂,則該班既愛好體育又愛好音樂的人數(shù)為  人.

 

查看答案和解析>>

科目:高中數(shù)學 來源:2014-2015學年河南省高二10月月考數(shù)學試卷(解析版) 題型:解答題

如圖,在中,邊上的中線長為3,且,

(1)求的值;

(2)求邊的長.

 

查看答案和解析>>

科目:高中數(shù)學 來源:2014-2015學年河南省高二上學期月考數(shù)學試卷(解析版) 題型:解答題

(本小題滿分12分)在數(shù)列中,

(1)設求數(shù)列的通項公式;

(2)求數(shù)列的前項和

 

查看答案和解析>>

同步練習冊答案