x2<1是-1<x<1的什么條件( 。
A、充分必要條件
B、必要不充分條件
C、充分不必要條件
D、既不充分與不必要
考點(diǎn):必要條件、充分條件與充要條件的判斷
專題:簡(jiǎn)易邏輯
分析:由x2<1?-1<x<1,即可得出.
解答: 解:x2<1?-1<x<1,
因此x2<1是-1<x<1的充要條件.
故選:A.
點(diǎn)評(píng):本題考查了一元二次不等式的解法、簡(jiǎn)易邏輯的有關(guān)知識(shí),屬于基礎(chǔ)題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

下列說(shuō)法中不正確的是( 。
A、對(duì)于線性回歸方程
y
=
b
x+
a
,直線必經(jīng)過(guò)點(diǎn)(
.
x
.
y
B、莖葉圖的優(yōu)點(diǎn)在于它可以保存原始數(shù)據(jù),并且可以隨時(shí)記錄
C、將一組數(shù)據(jù)中的每一個(gè)數(shù)據(jù)都加上或減去同一常數(shù)后,方差恒不變
D、擲一枚均勻硬幣出現(xiàn)正面向上的概率是
1
2
,那么一枚硬幣投擲2次一定出現(xiàn)正面

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

下列四個(gè)命題中,正確命題的個(gè)數(shù)是( 。﹤(gè)
①若平面α∥平面β,直線m∥平面α,則m∥β;
②若平面α⊥平面γ,且平面β⊥平面γ,則α∥β;
③平面α⊥平面β,且α∩β=l,點(diǎn)A∈α,A∉l,若直線AB⊥l,則AB⊥β;
④直線m、n為異面直線,且m⊥平面α,n⊥平面β,若m⊥n,則α⊥β.
A、0B、1C、2D、3

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

兩條不同的直線l1,l2平行的一個(gè)充分不必要條件是( 。
A、l1,l2都平行于同一個(gè)平面
B、l1,l2與同一個(gè)平面所成的角相等
C、l1平行于l2所在的平面
D、l1,l2都垂直于同一個(gè)平面

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知一個(gè)正四面體紙盒的俯視圖如圖所示,其中四邊形ABCD是邊長(zhǎng)為3
2
的正方形,若在該正四面體紙盒內(nèi)放一個(gè)正方體,使正方體可以在紙盒內(nèi)任意轉(zhuǎn)動(dòng),則正方體棱長(zhǎng)的最大值為( 。
A、
2
B、1
C、2
D、
3

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖,已知OPQ是半徑為
7
、圓心角為
π
3
的扇形,C是扇形弧上的動(dòng)點(diǎn),ABCD是扇形的內(nèi)接矩形,記∠AOC=α.
(1)當(dāng)α=
π
6
時(shí),OA、OB的長(zhǎng);
(2)求
OA
OB
的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知曲線C:y=x2+x
(1)求在x=1處的切線方程;
(2)求過(guò)點(diǎn)P(1,1)的切線的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(1)已知橢圓的兩個(gè)焦點(diǎn)坐標(biāo)分別是(-2,0),(2,0),并且經(jīng)過(guò)點(diǎn)(
5
2
,-
3
2
),求它的標(biāo)準(zhǔn)方程;
(2)若橢圓經(jīng)過(guò)兩點(diǎn)(2,0)和(0,1),求橢圓的標(biāo)準(zhǔn)方程,并寫出焦點(diǎn)坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(1)計(jì)算:
1
2
-1
-(
3
5
0+(
9
4
-0.5+
4(
2
-e)4
;
(2)計(jì)算
lg5•lg8000+(lg2
3
)2
lg600-
1
2
lg0.036-
1
2
lg0.1

查看答案和解析>>

同步練習(xí)冊(cè)答案