某醫(yī)藥研究所開發(fā)一種新藥,在試驗(yàn)藥效時(shí)發(fā)現(xiàn):如果成人按規(guī)定劑量服用,那么服藥后每毫升血液中的含藥量y(微克)與時(shí)間x(小時(shí))之間滿足y=其對(duì)應(yīng)曲線(如圖所示)過(guò)點(diǎn).
 
(1)試求藥量峰值(y的最大值)與達(dá)峰時(shí)間(y取最大值時(shí)對(duì)應(yīng)的x值);
(2)如果每毫升血液中含藥量不少于1微克時(shí)治療疾病有效,那么成人按規(guī)定劑量服用該藥后一次能維持多長(zhǎng)的有效時(shí)間(精確到0.01小時(shí))?
(1)y取最大值時(shí),對(duì)應(yīng)的x值為1.(2)3.85小時(shí)
(1)由曲線過(guò)點(diǎn),可得,故a=8.
當(dāng)0<x<1時(shí),y==4,
當(dāng)x≥1時(shí),設(shè)2x-1=t,可知t≥1,
y==4(當(dāng)且僅當(dāng)t=1,即x=1時(shí),等號(hào)成立).
綜上可知ymax=4,且當(dāng)y取最大值時(shí),對(duì)應(yīng)的x值為1.
所以藥量峰值為4微克,達(dá)峰時(shí)間為1小時(shí).
(2)當(dāng)0<x<1時(shí),由=1,可得x2-8x+1=0,
解得x=4±,又4+>1,故x=4-.
當(dāng)x≥1時(shí),設(shè)2x-1=t,則t≥1,=1,可得=1,解得t=4±,
又t≥1,故t=4+,所以2x-1=4+,可得x=log2(4+)+1.
由圖像知當(dāng)y≥1時(shí),對(duì)應(yīng)的x的取值范圍是[4-,log2(4+)+1],
log2(4+)+1-(4-)≈3.85,
所以成人按規(guī)定劑量服用該藥后一次能維持大約3.85小時(shí)的有效時(shí)間.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知f(x)=(x≠a).
(1)若a=-2,試證f(x)在(-∞,-2)上單調(diào)遞增.
(2)若a>0且f(x)在(1,+∞)上單調(diào)遞減,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知x∈[-3,2],求f(x)=+1的最小值與最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

下列函數(shù)中,為偶函數(shù)且有最小值的是(  )
A.f(x)=x2xB.f(x)=|ln x|
C.f(x)=xsin xD.f(x)=ex+ex

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

函數(shù)f(x)=1-(  )
A.在(-1,+∞)上單調(diào)遞增
B.在(1,+∞)上單調(diào)遞增
C.在(-1,+∞)上單調(diào)遞減
D.在(1,+∞)上單調(diào)遞減

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

已知函數(shù)f(x)是R上的單調(diào)遞增函數(shù)且為奇函數(shù),數(shù)列{an}是等差數(shù)列,a3>0,則f(a1)+f(a3)+f(a5)的值(  )
A.恒為正數(shù)
B.恒為負(fù)數(shù)
C.恒為0
D.可以為正數(shù)也可以為負(fù)數(shù)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

已知,則下面結(jié)論正確的是(   )
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

函數(shù)f(x)的定義域?yàn)镽,f(-1)=2,對(duì)任意x∈R,f′(x)>2,則f(x)>2x+4的解集為(  ).
A.(-1,1)B.(-1,+∞)
C.(-∞,-1)D.(-∞,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

已知偶函數(shù)在區(qū)間單調(diào)遞減,則滿足取值范圍是(     )
A.B.
C.D.

查看答案和解析>>

同步練習(xí)冊(cè)答案