已知函數(shù)是定義在上的奇函數(shù),當(dāng)時(shí), (其中e是自然界對(duì)數(shù)的底,)
(Ⅰ)設(shè),求證:當(dāng)時(shí),;
(Ⅱ)是否存在實(shí)數(shù)a,使得當(dāng)時(shí),的最小值是3 ?如果存在,求出實(shí)數(shù)a的值;如果不存在,請(qǐng)說(shuō)明理由。
(Ⅰ)見(jiàn)解析;(Ⅱ)存在,
【解析】
試題分析:(Ⅰ)根據(jù)已知條件和奇函數(shù)的定義與性質(zhì),先求出函數(shù)在整個(gè)定義域的解析式,再由和的關(guān)系列不等式,由函數(shù)的單調(diào)性和導(dǎo)數(shù)的關(guān)系解不等式即可;(Ⅱ)首先假設(shè)這樣的存在,然后根據(jù)函數(shù)的單調(diào)性和導(dǎo)數(shù)的關(guān)系判斷函數(shù)的單調(diào)性找到最小值,注意解題過(guò)程中要對(duì)參數(shù)進(jìn)行討論,不能漏解.
試題解析:(Ⅰ)設(shè),則,所以,
又因?yàn)?img src="http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/2013103023153496488138/SYS201310302316196436255927_DA.files/image002.png">是定義在上的奇函數(shù),所以,
故函數(shù)的解析式為 , 2分
證明:當(dāng)且時(shí),,設(shè),
因?yàn)?img src="http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/2013103023153496488138/SYS201310302316196436255927_DA.files/image015.png">,所以當(dāng)時(shí),,此時(shí)單調(diào)遞減;當(dāng)時(shí),,此時(shí)單調(diào)遞增,所以,
又因?yàn)?img src="http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/2013103023153496488138/SYS201310302316196436255927_DA.files/image021.png">,所以當(dāng)時(shí),,此時(shí)單調(diào)遞減,所以,
所以當(dāng)時(shí),即 ; 4分
(Ⅱ)解:假設(shè)存在實(shí)數(shù),使得當(dāng)時(shí),有最小值是3,則 ..5分
(。┊(dāng),時(shí),.在區(qū)間上單調(diào)遞增,,不滿(mǎn)足最小值是3, 6分
(ⅱ)當(dāng),時(shí),,在區(qū)間上單調(diào)遞增,,也不滿(mǎn)足最小值是3, 7分
(ⅲ)當(dāng),由于,則,故函數(shù) 是上的增函數(shù).
所以,解得(舍去). 8分
(ⅳ)當(dāng)時(shí),則
當(dāng)時(shí),,此時(shí)函數(shù)是減函數(shù);
當(dāng)時(shí),,此時(shí)函數(shù)是增函數(shù).
所以,解得.
綜上可知,存在實(shí)數(shù),使得當(dāng)時(shí),有最小值3. 10分
考點(diǎn):函數(shù)的單調(diào)性與導(dǎo)數(shù)的關(guān)系,利用導(dǎo)數(shù)求函數(shù)的極值.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源:2015屆廣西柳州鐵路一中高一上學(xué)期第一次月考數(shù)學(xué)試卷(解析版) 題型:解答題
已知函數(shù)是定義在上的奇函數(shù),且。
(1)求函數(shù)的解析式;
(2)用單調(diào)性的定義證明在上是增函數(shù);
(3)解不等式。
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源:2015屆遼寧省本溪市高一上學(xué)期第一次月考數(shù)學(xué)試卷(解析版) 題型:解答題
(12分)已知函數(shù)是定義在上的奇函數(shù),且,
(1)確定函數(shù)的解析式;
(2)用定義證明在(-1 ,1)上是增函數(shù);
(3)解不等式
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源:2013屆廣東省高二下期中文科數(shù)學(xué)試卷(解析版) 題型:選擇題
已知函數(shù)是定義在上的以5為周期的奇函數(shù), 若,
,則a的取值范圍是 ( )
A. B.
C. D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源:2011-2012學(xué)年浙江省協(xié)作體高三3月調(diào)研理科數(shù)學(xué)試卷(解析版) 題型:解答題
已知函數(shù)是定義在上的奇函數(shù),當(dāng)時(shí), (其中e是自然界對(duì)數(shù)的底,)
(Ⅰ)設(shè),求證:當(dāng)時(shí),;
(Ⅱ)是否存在實(shí)數(shù)a,使得當(dāng)時(shí),的最小值是3 ?如果存在,求出實(shí)數(shù)a的值;如果不存在,請(qǐng)說(shuō)明理由。
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源:黑龍江省2012屆高二下學(xué)期期末考試數(shù)學(xué)(理) 題型:解答題
已知函數(shù)是定義在上的奇函數(shù),且
(1)確定函數(shù)的解析式;
(2)判斷并證明在的單調(diào)性;
(3)解不等式
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com