設(shè)橢圓C: 過(guò)點(diǎn), 且離心率

(Ⅰ)求橢圓C的方程;
(Ⅱ)過(guò)右焦點(diǎn)的動(dòng)直線交橢圓于點(diǎn),設(shè)橢圓的左頂點(diǎn)為連接且交動(dòng)直線,若以MN為直徑的圓恒過(guò)右焦點(diǎn)F,求的值.

(1) (2)

解析試題分析:解:
(Ⅰ)由題意知, ,解得
      5分
(Ⅱ)設(shè) ,
K存在時(shí),設(shè)直線
聯(lián)立 得 
   8分


 同理      10分



解得                              12分
當(dāng)k不存在時(shí),為等腰
, 由C、B、M三點(diǎn)共線易得到 
綜上.                           13分
考點(diǎn):直線與橢圓的位置關(guān)系
點(diǎn)評(píng):解決的關(guān)鍵是熟練的暈喲灰姑娘橢圓的幾何性質(zhì)來(lái)得到方程,以及聯(lián)立方程組的思想,結(jié)合韋達(dá)定理來(lái)得到根與系數(shù)的方法,屬于基礎(chǔ)題。

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知橢圓過(guò)點(diǎn),且它的離心率.直線
與橢圓交于、兩點(diǎn).

(Ⅰ)求橢圓的標(biāo)準(zhǔn)方程;
(Ⅱ)當(dāng)時(shí),求證:兩點(diǎn)的橫坐標(biāo)的平方和為定值;
(Ⅲ)若直線與圓相切,橢圓上一點(diǎn)滿足,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知雙曲線的右頂點(diǎn)為A,右焦點(diǎn)為F,右準(zhǔn)線與軸交于點(diǎn)B,且與一條漸近線交于點(diǎn)C,點(diǎn)O為坐標(biāo)原點(diǎn),,,過(guò)點(diǎn)F的直線與雙曲線右支交于點(diǎn)
(Ⅰ)求此雙曲線的方程;
(Ⅱ)求面積的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

設(shè)點(diǎn)P是曲線C:上的動(dòng)點(diǎn),點(diǎn)P到點(diǎn)(0,1)的距離和它到
焦點(diǎn)F的距離之和的最小值為
(1)求曲線C的方程
(2)若點(diǎn)P的橫坐標(biāo)為1,過(guò)P作斜率為的直線交C與另一點(diǎn)Q,交x軸于點(diǎn)M,
過(guò)點(diǎn)Q且與PQ垂直的直線與C交于另一點(diǎn)N,問(wèn)是否存在實(shí)數(shù)k,使得直線MN與曲線C
相切?若存在,求出k的值,若不存在,說(shuō)明理由。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

在直角坐標(biāo)系xOy中,橢圓C1: ="1" (a>b>0)的左、右焦點(diǎn)分別為F1、F2, F2也是拋物線C2:y2=4x的焦點(diǎn),點(diǎn)M為C1與C2在第一象限的交點(diǎn),且|MF2|=.
(1)求C1的方程;
(2)直線l∥OM,與C1交于A、B兩點(diǎn),若·=0,求直線l的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知雙曲線實(shí)軸在軸,且實(shí)軸長(zhǎng)為2,離心率,  L是過(guò)定點(diǎn)的直線.
(1)求雙曲線的標(biāo)準(zhǔn)方程;
(2)判斷L能否與雙曲線交于,兩點(diǎn),且線段恰好以點(diǎn)為中點(diǎn),若存在,求出直線L的方程,若不存,說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知雙曲線的離心率為2,焦點(diǎn)與橢圓的焦點(diǎn)相同,求雙曲線的方程及焦點(diǎn)坐標(biāo)。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

(本題滿分13分)已知橢圓()過(guò)點(diǎn),其左、右焦點(diǎn)分別為,且.
(Ⅰ)求橢圓的方程;
(Ⅱ)若是直線上的兩個(gè)動(dòng)點(diǎn),且,則以為直徑的圓是否過(guò)定點(diǎn)?請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

(本小題滿分10分)在直角坐標(biāo)平面內(nèi),以坐標(biāo)原點(diǎn)為極點(diǎn),軸的正半軸為極軸建立極坐標(biāo)系,曲線的極坐標(biāo)方程是,直線的參數(shù)方程是為參數(shù))。
求極點(diǎn)在直線上的射影點(diǎn)的極坐標(biāo);
分別為曲線、直線上的動(dòng)點(diǎn),求的最小值。

查看答案和解析>>

同步練習(xí)冊(cè)答案