過(guò)雙曲線的左焦點(diǎn),作傾斜角為的直線交該雙曲線右支于點(diǎn),若,且,則雙曲線的離心率為_(kāi)_________.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
如圖,設(shè)E:=1(a>b>0)的焦點(diǎn)為F1與F2,且P∈E,∠F1PF2=2θ.求證:△PF1F2的面積S=b2tanθ.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知橢圓=1(a>b>0)的離心率為,且過(guò)點(diǎn)P,A為上頂點(diǎn),F(xiàn)為右焦點(diǎn).點(diǎn)Q(0,t)是線段OA(除端點(diǎn)外)上的一個(gè)動(dòng)點(diǎn),過(guò)Q作平行于x軸的直線交直線AP于點(diǎn)M,以QM為直徑的圓的圓心為N.
(1)求橢圓方程;
(2)若圓N與x軸相切,求圓N的方程;
(3)設(shè)點(diǎn)R為圓N上的動(dòng)點(diǎn),點(diǎn)R到直線PF的最大距離為d,求d的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知中心在原點(diǎn)的雙曲線的右焦點(diǎn)為,實(shí)軸長(zhǎng).
(1)求雙曲線的方程
(2)若直線與雙曲線恒有兩個(gè)不同的交點(diǎn),且為銳角(其中為原點(diǎn)),求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
如圖,兩條相交線段、的四個(gè)端點(diǎn)都在拋物線上,其中,直線的方程為,直線的方程為.
(1)若,,求的值;
(2)探究:是否存在常數(shù),當(dāng)變化時(shí),恒有?
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
設(shè)拋物線y2=2px(p>0)的焦點(diǎn)為F,經(jīng)過(guò)點(diǎn)F的直線交拋物線于A、B兩點(diǎn),點(diǎn)C在拋物線的準(zhǔn)線上,且BC∥x軸,證明:直線AC經(jīng)過(guò)原點(diǎn)O.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
P為圓A:上的動(dòng)點(diǎn),點(diǎn).線段PB的垂直平分線與半徑PA相交于點(diǎn)M,記點(diǎn)M的軌跡為Γ.
(1)求曲線Γ的方程;
(2)當(dāng)點(diǎn)P在第一象限,且時(shí),求點(diǎn)M的坐標(biāo).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
在平面直角坐標(biāo)系xOy中,F是拋物線C:x2=2py(p>0)的焦點(diǎn),M是拋物線C上位于第一象限內(nèi)的任意一點(diǎn),過(guò)M,F,O三點(diǎn)的圓的圓心為Q,點(diǎn)Q到拋物線C的準(zhǔn)線的距離為.
(1)求拋物線C的方程;
(2)是否存在點(diǎn)M,使得直線MQ與拋物線C相切于點(diǎn)M?若存在,求出點(diǎn)M的坐標(biāo);若不存在,說(shuō)明理由.
(3)若點(diǎn)M的橫坐標(biāo)為,直線l:y=kx+與拋物線C有兩個(gè)不同的交點(diǎn)A,B,l與圓Q有兩個(gè)不同的交點(diǎn)D,E,求當(dāng)≤k≤2時(shí),|AB|2+|DE|2的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知拋物線C:y2=2px(p>0)過(guò)點(diǎn)A(1,-2).
(1)求拋物線C的方程,并求其準(zhǔn)線方程.
(2)是否存在平行于OA(O為坐標(biāo)原點(diǎn))的直線l,使得直線l與拋物線C有公共點(diǎn),且直線OA與l的距離等于?若存在,求出直線l的方程;若不存在,說(shuō)明理由.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com