如圖,在四棱錐P-ABCD中,平面ABCD,AD//BC,BC=2AD,AC,Q是線段PB的中點.

(1)求證:平面PAC;
(2)求證:AQ//平面PCD.

(1)詳見解析;(2)詳見解析.

解析試題分析:(1)要證平面,只要證:,由題設(shè)平面
,結(jié)合條件,可證平面,從而有,結(jié)論可證.
(2)思路一:取中點,連接.因為是線段的中點,的中點,可證四邊形是平行四邊形,從而有,可證∥平面
思路二:取的中點,連接、.因為  所以,通過證明平面∥平面,達到證明∥平面的目的.
證明:(1)因為平面,平面
所以 ,                           2分
又因為,,平面,
所以平面                                 3分
又因為平面,平面
所以                                      4分
因為,平面,,
所以 平面

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

(本小題滿分12分)
在如圖所示的多面體中,四邊形都為矩形。

(Ⅰ)若,證明:直線平面;
(Ⅱ)設(shè),分別是線段,的中點,在線段上是否存在一點,使直線平面?請證明你的結(jié)論。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

如圖菱形ABEF所在平面與直角梯形ABCD所在平面互相垂直,AB=2AD=2CD=4,,點H、G分別是線段EF、BC的中點.
(1)求證:平面AHC平面;(2)點M在直線EF上,且平面,求平面ACH與平面ACM所成銳角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

如圖,在直三棱柱中,,,且異面直線所成的角等于.

(1)求棱柱的高;
(2)求與平面所成的角的大小.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

(2012•廣東)如圖所示,在四棱錐P﹣ABCD中,底面ABCD為矩形,PA⊥平面ABCD,點E在線段PC上,PC⊥平面BDE.
(1)證明:BD⊥平面PAC;
(2)若PA=1,AD=2,求二面角B﹣PC﹣A的正切值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

(2014·海淀模擬)如圖,在直三棱柱ABC-A1B1C1中,∠BAC=90°,AB=AC=AA1,且E是BC中點.

(1)求證:A1B∥平面AEC1.
(2)求證:B1C⊥平面AEC1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

如圖,在四棱錐P﹣ABCD中,PA⊥平面ABCD,四邊形ABCD是平行四邊形,且AC⊥CD,PA=AD,M,Q分別是PD,BC的中點.
(1)求證:MQ∥平面PAB;
(2)若AN⊥PC,垂足為N,求證:MN⊥PD.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

如圖,四棱柱ABCD—A1B1C1D1中,側(cè)棱A1A⊥底面ABCD,AB∥DC,AB⊥AD,AD=CD=1,AA1=AB=2,E為棱AA1的中點.

(1)證明B1C1⊥CE;
(2)求二面角B1­CE­C1的正弦值;
(3)設(shè)點M在線段C1E上,且直線AM與平面ADD1A1所成角的正弦值為,求線段AM的長.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

如圖,在直三棱柱中,,.若的中點,求直線與平面所成的角.

查看答案和解析>>

同步練習(xí)冊答案