【題目】已知拋物線C,過點的直線l與拋物線C交于不同的兩點M,N,設(shè),,且時,則直線MN斜率的取值范圍是  

A. B.

C. D.

【答案】A

【解析】

設(shè)點、,并設(shè)直線l的方程為,將直線l的方程與拋物線C的方程聯(lián)立,列出韋達(dá)定理,利用兩點的斜率公式并結(jié)合韋達(dá)定理得出直線QM和直線NQ的斜率互為相反數(shù),得出的角平分線為x軸,利用角平分線的性質(zhì)得出,可得出,代入韋達(dá)定理并消去可得出關(guān)于的函數(shù)表達(dá)式,可計算出的范圍,由可得出直線MN的斜率k的取值范圍.

設(shè)直線l的方程為,則,設(shè)點、

將直線l的方程與拋物線C的方程聯(lián)立,消去x得,,由韋達(dá)定理得

所以,,所以,x軸為的角平分線,,所以,

式代入韋達(dá)定理得

,則,所以,,

,所以,

設(shè)直線MN的斜率為k,則

,所以,,解得

故選:A

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù) 的部分圖象如圖所示,則函數(shù)圖象的一個對稱中心可能為( )

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,的直徑,PA垂直于所在的平面,C是圓周上不同于A,B的一動點.

1)證明:是直角三角形;

2)若,且當(dāng)直線與平面所成角的正切值為時,求直線與平面所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】我國是世界上嚴(yán)重缺水的國家,某市為了制定合理的節(jié)水方案,對居民用水情況進(jìn)行調(diào)查,通過抽樣,獲得某年100為居民每人的月均用水量(單位:噸),將數(shù)據(jù)按照分成9組,制成了如圖所示的頻率分布直方圖.

(1)求直方圖的的值;

(2)設(shè)該市有30萬居民,估計全市居民中月均用水量不低于3噸的人數(shù),說明理由.

(3)估計居民月用水量的中位數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知點A(0,-2),橢圓E (a>b>0)的離心率為,F是橢圓E的右焦點,直線AF的斜率為,O為坐標(biāo)原點.

(1)E的方程;

(2)設(shè)過點A的動直線lE相交于PQ兩點.當(dāng)OPQ的面積最大時,求l的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知,圓上的動點T滿足:線段TQ的垂直平分線與線段TP相交于點K

求點K的軌跡C的方程;

經(jīng)過點的斜率之積為的兩條直線,分別與曲線C相交于MN兩點,試判斷直線MN是否經(jīng)過定點若是,則求出定點坐標(biāo);若否,則說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某賽季,甲、乙兩名籃球運動員都參加了場比賽,他們所有比賽得分的情況如下:

甲:

乙: .

(1)求甲、乙兩名運動員得分的中位數(shù).

(2)分別求甲、乙兩名運動員得分的平均數(shù)、方差,你認(rèn)為哪位運動員的成績更穩(wěn)定?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某大學(xué)進(jìn)行自主招生時,需要進(jìn)行邏輯思維和閱讀表達(dá)兩項能力的測試.學(xué)校對參加測試的200名學(xué)生的邏輯思維成績、閱讀表達(dá)成績以及這兩項的總成績進(jìn)行了排名.其中甲、乙、丙三位同學(xué)的排名情況如下圖所示:

得出下面四個結(jié)論:

甲同學(xué)的邏輯排名比乙同學(xué)的邏輯排名更靠前

②乙同學(xué)的邏輯思維成績排名比他的閱讀表達(dá)成績排名更靠前

③甲、乙、丙三位同學(xué)的邏輯思維成績排名中,甲同學(xué)更靠前

④甲同學(xué)的閱讀表達(dá)成績排名比他的邏輯思維成績排名更靠前

則所有正確結(jié)論的序號是_________.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)甲、乙兩位同學(xué)上學(xué)期間,每天之前到校的概率均為.假定甲、乙兩位同學(xué)到校情況互不影響,且任一同學(xué)每天到校情況相互獨立.

1)設(shè)甲同學(xué)上學(xué)期間的三天中之前到校的天數(shù)為,求,,時的概率,,

2)設(shè)為事件“上學(xué)期間的三天中,甲同學(xué)在之前到校的天數(shù)比乙同學(xué)在之前到校的天數(shù)恰好多”,求事件發(fā)生的概率.

查看答案和解析>>

同步練習(xí)冊答案