【題目】已知cosα= ,cos(α﹣β)= ,且0<β<α<
(1)求tan2α的值;
(2)求β.

【答案】
(1)解:由cosα= ,0<β<α< ,可得sinα= = ,tanα= =4 ,

∴tan2α= = =﹣


(2)解:由cosα= ,cos(α﹣β)= ,且0<β<α< ,可得sin(α﹣β)= = ,

∴cosβ=cos[α﹣(α﹣β)]=cosαcos(α﹣β)+sinαsin(α﹣β)

= + = ,

∴β=


【解析】(1)由條件利用同角三角函數(shù)的基本關(guān)系,求得tanα的值,再利用二倍角的正切公式求得tan2α的值.(2)由條件求得sin(α﹣β)的值,利用兩角差的余弦公式求得cosβ=cos[α﹣(α﹣β)]的值,從而求得β的值.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某科研小組研究發(fā)現(xiàn):一棵水果樹的產(chǎn)量(單位:百千克)與肥料費(fèi)用(單位:百元)滿足如下關(guān)系: .此外,還需要投入其它成本(如施肥的人工費(fèi)等)百元.已知這種水果的市場(chǎng)售價(jià)為16元/千克(即16百元/百千克),且市場(chǎng)需求始終供不應(yīng)求.記該棵水果樹獲得的利潤(rùn)為(單位:百元).

(1)求的函數(shù)關(guān)系式;

當(dāng)投入的肥料費(fèi)用為多少時(shí),該水果樹獲得的利潤(rùn)最大?最大利潤(rùn)是多少?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖為一組合幾何體,其底面ABCD為正方形,PD⊥平面ABCD,EC∥PD且PD=AD=2EC=2.
(I)求證:AC⊥平面PDB;
(II)求四棱錐B﹣CEPD的體積;
(III)求該組合體的表面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)直線l的方程為y=kx+b(其中k的值與b無(wú)關(guān)),圓M的方程為x2+y2﹣2x﹣4=0.
(1)如果不論k取何值,直線l與圓M總有兩個(gè)不同的交點(diǎn),求b的取值范圍;
(2)b=1,l與圓交于A,B兩點(diǎn),求|AB|的最大值和最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】計(jì)算下列幾個(gè)式子,結(jié)果為 的序號(hào)是 ①tan25°+tan35° tan25°tan35°,

③2(sin35°cos25°+sin55°cos65°),

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】按下列程序框圖運(yùn)算,則輸出的結(jié)果是(
A.42
B.128
C.170
D.682

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)f(x)是定義在R上恒不為零的函數(shù),且對(duì)任意的x、y∈R都有f(x)f(y)=f(x+y),若a1= ,an=f(n)(n∈N*),則數(shù)列{an}的前n項(xiàng)和Sn的取值范圍是(
A.[ ,1)
B.[ ,1]
C.( ,1)
D.( ,1]

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù).

(Ⅰ)討論函數(shù)的單調(diào)性;

(Ⅱ)已知點(diǎn),曲線在點(diǎn) 處的切線與直線交于點(diǎn),求為坐標(biāo)原點(diǎn))的面積最小時(shí)的值,并求出面積的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】為研究質(zhì)量x(單位:g)對(duì)彈簧長(zhǎng)度y(單位:cm)的影響,對(duì)不同質(zhì)量的6根彈簧進(jìn)行測(cè)量,得到如下數(shù)據(jù):

x (g)

5

10

15

20

25

30

y (cm)

7.25

8.12

8.95

9.90

10.9

11.8


(1)畫出散點(diǎn)圖;
(2)如果散點(diǎn)圖中的各點(diǎn)大致分布在一條直線的附近,求y與x之間的回歸方程. ( 其中

查看答案和解析>>

同步練習(xí)冊(cè)答案