已知函數(shù)f (x)=lnx,g(x)=ex
( I)若函數(shù)φ (x)=f (x)-數(shù)學(xué)公式,求函數(shù)φ (x)的單調(diào)區(qū)間;
(Ⅱ)設(shè)直線l為函數(shù)的圖象上一點(diǎn)A(x0,f (x0))處的切線.證明:在區(qū)間(1,+∞)上存在唯一的x0,使得直線l與曲線y=g(x)相切.

(Ⅰ)解:=,.(2分)
∵x>0且x≠1,∴φ'(x)>0
∴函數(shù)φ(x)的單調(diào)遞增區(qū)間為(0,1)和(1,+∞).(4分)
(Ⅱ)證明:∵,∴,
∴切線l的方程為
,①(6分)
設(shè)直線l與曲線y=g(x)相切于點(diǎn)
∵g'(x)=ex,∴,∴x1=-lnx0.(8分)
∴直線l也為,
,②(9分)
由①②得 ,
.(11分)
下證:在區(qū)間(1,+∞)上x(chóng)0存在且唯一.
由(Ⅰ)可知,φ(x)=在區(qū)間(1,+∞)上遞增.
,(13分)
結(jié)合零點(diǎn)存在性定理,說(shuō)明方程φ(x)=0必在區(qū)間(e,e2)上有唯一的根,這個(gè)根就是所求的唯一x0
故結(jié)論成立.
分析:(Ⅰ)求導(dǎo)函數(shù),確定導(dǎo)數(shù)恒大于0,從而可得求函數(shù)φ (x)的單調(diào)區(qū)間;
(Ⅱ)先求直線l為函數(shù)的圖象上一點(diǎn)A(x0,f (x0))處的切線方程,再設(shè)直線l與曲線y=g(x)相切于點(diǎn),進(jìn)而可得,再證明在區(qū)間(1,+∞)上x(chóng)0存在且唯一即可.
點(diǎn)評(píng):本題以函數(shù)為載體,考查導(dǎo)數(shù)知識(shí)的運(yùn)用,考查函數(shù)的單調(diào)性,考查曲線的切線,同時(shí)考查零點(diǎn)存在性定理,綜合性比較強(qiáng).
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=sinxcosφ+cosxsinφ(其中x∈R,0<φ<π).
(1)求函數(shù)f(x)的最小正周期;
(2)若函數(shù)y=f(2x+
π
4
)
的圖象關(guān)于直線x=
π
6
對(duì)稱,求φ的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)為定義在R上的奇函數(shù),且當(dāng)x>0時(shí),f(x)=(sinx+cosx)2+2cos2x,
(1)求x<0,時(shí)f(x)的表達(dá)式;
(2)若關(guān)于x的方程f(x)-a=o有解,求實(shí)數(shù)a的范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=aInx-ax,(a∈R)
(1)求f(x)的單調(diào)遞增區(qū)間;(文科可參考公式:(Inx)=
1
x

(2)若f′(2)=1,記函數(shù)g(x)=x3+x2[f(x)+
m
2
]
,若g(x)在區(qū)間(1,3)上總不單調(diào),求實(shí)數(shù)m的范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=x2-bx的圖象在點(diǎn)A(1,f(1))處的切線l與直線3x-y+2=0平行,若數(shù)列{
1
f(n)
}
的前n項(xiàng)和為Sn,則S2010的值為( 。
A、
2011
2012
B、
2010
2011
C、
2009
2010
D、
2008
2009

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)是定義在區(qū)間(-1,1)上的奇函數(shù),且對(duì)于x∈(-1,1)恒有f’(x)<0成立,若f(-2a2+2)+f(a2+2a+1)<0,則實(shí)數(shù)a的取值范圍是
 

查看答案和解析>>

同步練習(xí)冊(cè)答案