【題目】已知函數(shù)f(x)=x2+2ax+2,x∈[﹣5,5].
(1)當(dāng)a=﹣1時,求函數(shù)f(x)的最大值和最小值;
(2)當(dāng)a∈R時,求函數(shù)f(x)的最小值.
【答案】
(1)解:當(dāng)a=﹣1時,函數(shù)f(x)=x2﹣2x+2的圖象是開口朝上,且以直線x=1為對稱軸的拋物線,
由x∈[﹣5,5]得:
x=﹣5時,函數(shù)取最大值37,
x=1時,函數(shù)取最小值1
(2)解:函數(shù)f(x)=x2+2ax+2的圖象是開口朝上,且以直線x=﹣a為對稱軸的拋物線,
若﹣a<﹣5,即a>5,函數(shù)f(x)在[﹣5,5]上為增函數(shù),
當(dāng)x=﹣5時,函數(shù)取最小值27﹣10a;
若﹣5≤﹣a≤5,即﹣5≤a≤5,函數(shù)f(x)在[﹣5,﹣a]上為減函數(shù),在[﹣a,5]上為增函數(shù),
當(dāng)x=﹣a時,函數(shù)取最小值2﹣a2;
若﹣a>5,即a<﹣5,函數(shù)f(x)在[﹣5,5]上為減函數(shù),
當(dāng)x=5時,函數(shù)取最小值27+10a.
綜上可得:函數(shù)f(x)的最小值為:
【解析】(1)當(dāng)a=﹣1時,函數(shù)f(x)=x2﹣2x+2的圖象是開口朝上,且以直線x=1為對稱軸的拋物線,進而可得函數(shù)f(x)的最大值和最小值;(2)函數(shù)f(x)=x2+2ax+2的圖象是開口朝上,且以直線x=﹣a為對稱軸的拋物線,分類討論對稱軸與給定區(qū)間的位置關(guān)系,綜合討論結(jié)果,可得答案.
【考點精析】本題主要考查了二次函數(shù)的性質(zhì)的相關(guān)知識點,需要掌握當(dāng)時,拋物線開口向上,函數(shù)在上遞減,在上遞增;當(dāng)時,拋物線開口向下,函數(shù)在上遞增,在上遞減才能正確解答此題.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】若函數(shù)f(x)是定義在R上的偶函數(shù),在(﹣∞,0]上單調(diào)遞減,且f(﹣4)=0,則使得x|f(x)+f(﹣x)|<0的x的取值范圍是
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】給出下列結(jié)論:
①y=x2+1,x∈[﹣1,2],y的值域[2,5]是;
②冪函數(shù)圖象一定不過第四象限;
③函數(shù)f(x)=loga(2x﹣1)﹣1的圖象過定點(1,0);
④若loga >1,則a的取值范圍是( ,1);
⑤函數(shù)f(x)= + 是既奇又偶的函數(shù);
其中正確的序號是 .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】PM2.5是指大氣中直徑小于或等于2.5微米的顆粒物,也稱為可入肺顆粒物,我國PM2.5標(biāo)準(zhǔn)采用世衛(wèi)組織設(shè)定的最寬限值,即PM2.5日均值在35微克/立方米以下空氣質(zhì)量為一級;在35微克/立方米~75微克/立方米之間空氣質(zhì)量為二級;在75微克/立方米以上空氣質(zhì)量為超標(biāo).某市環(huán)保局從市區(qū)2017年上半年每天的PM2.5監(jiān)測數(shù)據(jù)中隨機抽取15天的數(shù)據(jù)作為樣本,監(jiān)測值如莖葉圖所示(十位為莖,個位為葉)
(1)從這15天的數(shù)據(jù)中任取一天,求這天空氣質(zhì)量達到一級的概率;
(2)從這15天的數(shù)據(jù)中任取3天的數(shù)據(jù),記表示其中空氣質(zhì)量達到一級的天數(shù),求的分布列;
(3)以這15天的PM2.5的日均值來估計一年的空氣質(zhì)量情況,(一年按360天來計算),則一年中大約有多少天的空氣質(zhì)量達到一級.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知集合U=R,A={x|﹣1≤x<3},B={x|2x﹣4≥x﹣2}.
(1)求A∩B,(UA)∪B;
(2)若集合C={x|2x+a>0},滿足B∪C=C,求實數(shù)a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】給出下列結(jié)論:①y=1是冪函數(shù);
②定義在R上的奇函數(shù)y=f(x)滿足f(0)=0
③函數(shù) 是奇函數(shù)
④當(dāng)a<0時,
⑤函數(shù)y=1的零點有2個;
其中正確結(jié)論的序號是(寫出所有正確結(jié)論的編號).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,正三棱柱ABC﹣A1B1C1的所有棱長都為2,D為CC1中點.試用空間向量知識解下列問題:
(1)求證:平面ABB1A1⊥平面A1BD;
(2)求二面角A﹣A1D﹣B的大。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知非空集合A={x|a<x<2a+3},B={x|0<x<1}
(1)若a=﹣ ,求 A∩B
(2)若A∩B=,求實數(shù)a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】定義在上的函數(shù)滿足 , .
(1)求函數(shù)的解析式;
(2)求函數(shù)的單調(diào)區(qū)間;
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com