(09年湖北八校聯(lián)考理)(12分)如圖,已知正三棱柱各棱長(zhǎng)都為,為棱上的動(dòng)點(diǎn)。

(Ⅰ)試確定的值,使得

(Ⅱ)若,求二面角的大小;

(Ⅲ)在(Ⅱ)的條件下,求點(diǎn)到面的距離。

解析:【法一】(Ⅰ)當(dāng)時(shí),作上的射影. 連結(jié).

平面,∴,∴的中點(diǎn),又,∴也是的中點(diǎn),

.  反之當(dāng)時(shí),取的中點(diǎn),連接、.

為正三角形,∴.   由于的中點(diǎn)時(shí),

平面,∴平面,∴.……4′

(Ⅱ)當(dāng)時(shí),作上的射影. 則底面.

上的射影,連結(jié),則.

為二面角的平面角。

又∵,∴,∴.

,又∵,∴.

,∴的大小為.…8′

(Ⅲ)設(shè)到面的距離為,則,∵,∴平面,

即為點(diǎn)到平面的距離,

,∴.

,解得.即到面的距離為.12′

【法二】以為原點(diǎn),軸,過點(diǎn)與垂直的直線為軸,

軸,建立空間直角坐標(biāo)系,如圖所示,

設(shè),則、.

(Ⅰ)由

,∴,即的中點(diǎn),

也即時(shí),.…………4′

(Ⅱ)當(dāng)時(shí),點(diǎn)的坐標(biāo)是.  取.

,.

是平面的一個(gè)法向量。

又平面的一個(gè)法向量為.

,∴二面角的大小是.……8′

(Ⅲ)設(shè)到面的距離為,則,∴到面的距離為.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(09年湖北八校聯(lián)考文)(12分)已知函數(shù),函數(shù)的圖像在點(diǎn)的切線方程是

    (Ⅰ)求函數(shù)的解析式:

    (Ⅱ)若函數(shù)在區(qū)間上是單調(diào)函數(shù),求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(09年湖北八校聯(lián)考文)(12分)如圖,已知正三棱柱的各棱長(zhǎng)都為,為棱上的動(dòng)點(diǎn).

(Ⅰ)當(dāng)時(shí),求證:.                              

(Ⅱ) 若,求二面角的大小.              

(Ⅲ) 在(Ⅱ)的條件下,求點(diǎn)到平面的距離.              

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(09年湖北八校聯(lián)考理)(13分)

如圖,已知曲線與拋物線的交點(diǎn)分別為、,曲線和拋物線在點(diǎn)處的切線分別為、,且的斜率分別為、.

(Ⅰ)當(dāng)為定值時(shí),求證為定值(與無(wú)關(guān)),并求出這個(gè)定值;

(Ⅱ)若直線軸的交點(diǎn)為,當(dāng)取得最小值時(shí),求曲線的方程。

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(09年湖北八校聯(lián)考文)(12分)

已知向量,,).函數(shù),

的圖象的一個(gè)對(duì)稱中心與它相鄰的一條對(duì)稱軸之間的距離為,且過點(diǎn).

(Ⅰ)求函數(shù)的表達(dá)式;

(Ⅱ)當(dāng)時(shí),求函數(shù)的單調(diào)區(qū)間。

查看答案和解析>>

同步練習(xí)冊(cè)答案