【題目】每年的金秋十月,越野e族阿拉善英雄會在內(nèi)蒙古自治區(qū)阿拉善盟阿左旗騰格里沙漠舉行,該項目已打造成集沙漠競技運動、汽車文化極致體驗、主題休閑度假為一體的超級汽車文化賽事娛樂綜合體.為了減少對環(huán)境的污染,某環(huán)保部門租用了特制環(huán)保車清潔現(xiàn)場垃圾.通過查閱近5年英雄會參會人數(shù)(萬人)與沙漠中所需環(huán)保車輛數(shù)量(輛),得到如下統(tǒng)計表:
參會人數(shù)(萬人) | 11 | 9 | 8 | 10 | 12 |
所需環(huán)保車輛(輛) | 28 | 23 | 20 | 25 | 29 |
(1)根據(jù)統(tǒng)計表所給5組數(shù)據(jù),求出關(guān)于的線性回歸方程.
(2)已知租用的環(huán)保車平均每輛的費用(元)與數(shù)量(輛)的關(guān)系為
.主辦方根據(jù)實際參會人數(shù)為所需要投入使用的環(huán)保車,
每輛支付費用6000元,超出實際需要的車輛,主辦方不支付任何費用.預(yù)計本次英雄會大約有14萬人參加,根據(jù)(Ⅰ)中求出的線性回歸方程,預(yù)測環(huán)保部門在確保清潔任務(wù)完成的前提下,應(yīng)租用多少輛環(huán)保車?獲得的利潤是多少?(注:利潤主辦方支付費用租用車輛的費用).
參考公式:
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知線段AB的端點B的坐標(biāo)為(3,0),端點A在圓上運動;
(1)求線段AB中點M的軌跡方程;
(2)過點C(1,1)的直線m與M的軌跡交于G、H兩點,求以弦GH為直徑的圓的面積最小值及此時直線m的方程.
(3)若點C(1,1),且P在M軌跡上運動,求的取值范圍.(O為坐標(biāo)原點)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】以直角坐標(biāo)系的原點O為極點,x軸的正半軸為極軸建立極坐標(biāo)系,曲線C的極坐標(biāo)方程為ρsin2α﹣4cosα=0.已知直線l的參數(shù)方程為(為參數(shù)),點M的直角坐標(biāo)為.
(1)求直線l和曲線C的普通方程;
(2)設(shè)直線l與曲線C交于A,B兩點,求.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某工廠利用隨機(jī)數(shù)表對生產(chǎn)的600個零件進(jìn)行抽樣測試,先將600個零件進(jìn)行編號,編號分別為001,002,,599,600從中抽取60個樣本,如下提供隨機(jī)數(shù)表的第4行到第6行:
32 21 18 34 29 78 64 54 07 32 52 42 06 44 38 12 23 43 56 77 35 78 90 56 42
84 42 12 53 31 34 57 86 07 36 25 30 07 32 86 23 45 78 89 07 23 68 96 08 04
32 56 78 08 43 67 89 53 55 77 34 89 94 83 75 22 53 55 78 32 45 77 89 23 45
若從表中第6行第6列開始向右依次讀取3個數(shù)據(jù),則得到的第6個樣本編號
A. 522B. 324C. 535D. 578
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】【2018屆安徽省蚌埠市高三上學(xué)期第一次教學(xué)質(zhì)量檢查】為監(jiān)控某種零件的一條生產(chǎn)線的生產(chǎn)過程,檢驗員每天從該生產(chǎn)線上隨機(jī)抽取10件零件,度量其內(nèi)徑尺寸(單位: ).根據(jù)長期生產(chǎn)經(jīng)驗,可以認(rèn)為這條生產(chǎn)線正常狀態(tài)下生產(chǎn)的零件的內(nèi)徑尺寸服從正態(tài)分布.
(1)假設(shè)生產(chǎn)狀態(tài)正常,記表示某一天內(nèi)抽取的10個零件中其尺寸在之外的零件數(shù),求及的數(shù)學(xué)期望;
(2)某天正常工作的一條生產(chǎn)線數(shù)據(jù)記錄的莖葉圖如下圖所示:
①計算這一天平均值與標(biāo)準(zhǔn)差;
②一家公司引進(jìn)了一條這種生產(chǎn)線,為了檢查這條生產(chǎn)線是否正常,用這條生產(chǎn)線試生產(chǎn)了5個零件,度量其內(nèi)徑分別為(單位: ):85,95,103,109,119,試問此條生產(chǎn)線是否需要進(jìn)一步調(diào)試,為什么?
參考數(shù)據(jù): , ,
, , ,
, , .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓: 的長軸長為6,且橢圓與圓: 的公共弦長為.
(1)求橢圓的方程.
(2)過點作斜率為的直線與橢圓交于兩點, ,試判斷在軸上是否存在點,使得為以為底邊的等腰三角形.若存在,求出點的橫坐標(biāo)的取值范圍,若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,已知AB丄平面BCD,M、N分別是AC、AD的中點,BC 丄 CD.
(1)求證:MN//平面BCD;
(2)若AB=1,BC=,求直線AC與平面BCD所成的角.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com