如圖1,已知梯形ABCD,AB∥CD,且CD=2AB,E是CD邊上的中點,線段AE與BD交于點F.將△ADE沿AE翻折到△AD′E位置,連接D′B和D′C(如圖2).

(Ⅰ)若G是BC中點,求證:EG∥平面BD′F;
(Ⅱ)若AD=BC=AB=2,平面AD′E⊥平面ABCE,求三棱錐D′-BCE的體積.
考點:棱柱、棱錐、棱臺的體積,直線與平面平行的判定
專題:計算題,空間位置關(guān)系與距離
分析:(Ⅰ)利用線面平行的判定,EG∥BF,∴EG∥平面BD'F;
(Ⅱ)先證明D'F⊥平面ABCE,找到棱錐的高,代人體積公式計算.
解答: 解:(Ⅰ)證明:∵在圖1中,E、G分別為DC,BC的中點,
∴EG∥BD,即EG∥BF.(3分)
∵EG?平面BD'F,BF?平面BD'F,
∴EG∥平面BD'F.(6分)
(Ⅱ)在圖1中,∵AB∥DE,AB=DE,
∴四邊形ABED為平行四邊形.
∵AB=AD=2,
∴平行四邊形ABED為菱形,
∴BD⊥AE,即D'F⊥AE,
∵平面AD'E⊥平面ABCE,且平面AD'E∩平面ABCE=AE,
∴D'F⊥平面ABCE.(9分)
∵BC=CE=BE=2,
S△BCE=
3
4
×22=
3
.(10分)
∴VD'-BCE=
1
3
S△BCE•D′F
=
1
3
×
3
×
3
=1
.(13分)
點評:本題考查的知識點是直線與平面平行的判定,棱錐的體積,其中(2)的關(guān)鍵是判斷出棱錐的高和底面面積,考查空間想象能力,計算能力.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

橢圓
x2
100
+
y2
36
=1的離心率為(  )
A、
3
5
B、
4
5
C、
3
4
D、
16
25

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知橢圓
x2
a2
+
y2
b2
=1(a>b>0)經(jīng)過點P(0,1),離心率為
2
2
,直線l:y=kx+m交橢圓于不同于點P的兩點A、B.
(1)求橢圓的方程;
(2)若以AB為直徑的圓經(jīng)過點P,求證:直線l過定點,并求出該點的坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知數(shù)列{log4an}是等差數(shù)列,log4a2=
3
2
,a1+a3=20

(1)求數(shù)列{an}的通項公式;
(2)求數(shù)列{log4an}的前n項和.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知向量
m
=(sinx,cosx),
n
=(cosx,
3
cosx),函數(shù)f(x)=
m
n
-
3
2

(1)求函數(shù)f(x)的最小正周期和單調(diào)遞增區(qū)間;
(2)如果△ABC的三邊a,b,c所對的角分別為A、B、C,且滿足b2+c2=a2+
3
bc,求f(A)的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖P是△ABC所在平面外一點,PA=PB,CB⊥平面PAB,M是PC的中點,N是AB上的點,AN=3NB.求證:MN⊥AB.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在數(shù)列{an}中,a1=
1
5
,an+an+1=
6
5n+1
(n∈N+
(1)證明:{5nan-1}是常數(shù)列;
(2)設(shè)xn=(2n-1)•10nan,求{xn}的前n項和Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖1,已知梯形ABCD,AB∥CD,且CD=2AB,E是CD邊上的中點,線段AE與BD交于點F.將△ADE沿AE翻折到△AD′E位置,連接D′B和D′C(如圖2).

(Ⅰ)直線BC上是否存在一點G,使EG∥平面BD′F,并說明理由;
(Ⅱ)若AD=BC=AB=2,平面AD′E⊥平面ABCE,求三棱錐C-BD′E的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖①,△ABC是等腰直角三角形,AC=BC=4,∠ACB=90°,E,F(xiàn)分別是AC,AB的中點,將△AEF折起,使點A到達(dá)A′位置,且A′在平面BCEF上的射影恰為點E,如圖②.

(1)求證EF⊥A′C;
(2)求點F到平面A′BC的距離.

查看答案和解析>>

同步練習(xí)冊答案