【題目】已知拋物線的焦點為,點在拋物線上,為坐標(biāo)原點,,且.

(1)求拋物線的方程;

(2)過焦點,且斜率為1的直線與拋物線交于兩點,線段的垂直平分線交拋物線兩點,求四邊形的面積.

【答案】(1)(2)

【解析】

(1)先由題,將拋物線求得,再根據(jù),且求得p的值,得出拋物線方程.

2)先將直線的方程與拋物線聯(lián)立,求得中點,再求出的方程聯(lián)立拋物線求得,最后求得面積即可.

解:(1)將代入拋物線的方程,得,所以,

因為,所以,整理得

解得,

當(dāng)時,,滿足;當(dāng)時,,,

所以拋物線的方程為.

(2)因為的方程為,代入,得.

設(shè),則,故的中點為.

又因為的斜率為-1,所以的方程為.

將上式代入,并整理得.

設(shè),,則,

.

所以四邊形的面積.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)函數(shù)

若函數(shù)處的切線與直線垂直,求實數(shù)a的值;

討論函數(shù)的單調(diào)區(qū)間與極值;

若函數(shù)有兩個零點,求滿足條件的最小整數(shù)a的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知四棱錐P-ABCD,底面ABCD,邊長為的菱形,又底面(與底面內(nèi)的任意一條直線垂直),且,點分別是棱的中點.

1)求異面直線所成角的余弦值

2)求點到平面的距離.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)命題p:實數(shù)x滿足x24ax+3a20a0),命題q:實數(shù)x滿足x25x+60

1)若a1,且pq為真命題,求實數(shù)x的取值范圍;

2)若pq的必要不充分條件,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖(1),等腰梯形,,,,分別是的兩個三等分點.若把等腰梯形沿虛線、折起,使得點和點重合,記為點,如圖(2).

(Ⅰ)求證:平面平面;

(Ⅱ)求平面與平面所成銳二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在四棱錐P-ABCD中,AB//CD,且

(1)證明:平面PAB⊥平面PAD

(2)若PA=PD=AB=DC, ,且四棱錐P-ABCD的體積為,求該四棱錐的側(cè)面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知左、右焦點分別為的橢圓過點,且橢圓C關(guān)于直線x=c對稱的圖形過坐標(biāo)原點.

(I)求橢圓C的離心率和標(biāo)準(zhǔn)方程。

(II)圓與橢圓C交于A,B兩點,R為線段AB上任一點,直線交橢圓C于P,Q兩點,若AB為圓的直徑,且直線的斜率大于1,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】將4名志愿者分別安排到火車站、輪渡碼頭、機(jī)場工作,要求每一個地方至少安排一名志愿者,其中甲、乙兩名志愿者不安排在同一個地方工作,則不同的安排方法共有

A. 24種B. 30種C. 32種D. 36種

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知曲線C1y=cos x,C2y=sin (2x+),則下面結(jié)論正確的是( )

A. C1上各點的橫坐標(biāo)伸長到原來的2倍,縱坐標(biāo)不變,再把得到的曲線向右平移個單位長度,得到曲線C2

B. C1上各點的橫坐標(biāo)伸長到原來的2倍,縱坐標(biāo)不變,再把得到的曲線向左平移個單位長度,得到曲線C2

C. C1上各點的橫坐標(biāo)縮短到原來的倍,縱坐標(biāo)不變,再把得到的曲線向右平移個單位長度,得到曲線C2

D. C1上各點的橫坐標(biāo)縮短到原來的倍,縱坐標(biāo)不變,再把得到的曲線向左平移個單位長度,得到曲線C2

查看答案和解析>>

同步練習(xí)冊答案