【題目】已知a,b,c分別為△ABC三個(gè)內(nèi)角A,B,C的對(duì)邊,
(1)求A的大小;
(2)若a=7,求△ABC的周長的取值范圍
【答案】解:(1)∵,
∴由正弦定理可得,
∴sinAcosC+sinAsinC=sin(A+C)+sinC,
∴sinA﹣cosA=1,
∴sin(A﹣30°)=,
∴A﹣30°=30°,∴A=60°;
(2)由題意,b>0,c>0,b+c>a=7,
∴由余弦定理49==(b+c)2﹣3bc≥(b+c)2(當(dāng)且僅當(dāng)b=c時(shí)取等號(hào)),
∴b+c≤14,
∵b+c>7,
∴7<b+c≤14,
∴△ABC的周長的取值范圍為(14,21].
【解析】(1)利用正弦定理,結(jié)合和差的正弦公式,化簡(jiǎn)可得結(jié)論;
(2)利用余弦定理結(jié)合基本不等式,可求△ABC的周長的取值范圍.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=loga ,(a>0且a≠1).
(1)判斷f(x)的奇偶性,并加以證明;
(2)是否存在實(shí)數(shù)m使得f(x+2)+f(m﹣x)為常數(shù)?若存在,求出m的值;若不存在,說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知f(x)是定義在[(﹣2,0)∪(0,2)]上的奇函數(shù),當(dāng)x>0,f(x)的圖象如圖所示,那么f(x)的值域是 .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】△ABC的三個(gè)內(nèi)角A,B,C對(duì)應(yīng)的邊分別a,b,c,且acosC,bcosB,ccosA成等差數(shù)列,則角B等于( )
A.30°
B.60°
C.90°
D.120°
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知命題p:x∈A,且A={x|a﹣1<x<a+1},命題q:x∈B,且B={x|x2﹣4x+3≥0}
(Ⅰ)若A∩B=,A∪B=R,求實(shí)數(shù)a的值;
(Ⅱ)若p是q的充分條件,求實(shí)數(shù)a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】定義在(0,+∞)上的函數(shù)f(x)滿足下面三個(gè)條件:
①對(duì)任意正數(shù)a,b,都有f(a)+f(b)=f(ab);
②當(dāng)x>1時(shí),f(x)<0;
③f(2)=﹣1
(I)求f(1)和 的值;
(II)試用單調(diào)性定義證明:函數(shù)f(x)在(0,+∞)上是減函數(shù);
(III)求滿足f(log4x)>2的x的取值集合.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,四棱錐P﹣ABCD中,ABCD為矩形,△PAD為等腰直角三角形,∠APD=90°,面PAD⊥面ABCD,且AB=1,AD=2,E、F分別為PC和BD的中點(diǎn).
(1)證明:EF∥面PAD;
(2)證明:面PDC⊥面PAD.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com