已知點(diǎn)H(0,-3),點(diǎn)P在x軸上,點(diǎn)Q在y軸正半軸上,點(diǎn)M在直線(xiàn)PQ上,且滿(mǎn)足=0,=-
(1)當(dāng)點(diǎn)P在x軸上移動(dòng)時(shí),求動(dòng)點(diǎn)M的軌跡曲線(xiàn)C的方程;
(2)過(guò)定點(diǎn)A(a,b)的直線(xiàn)與曲線(xiàn)C相交于兩點(diǎn)S R,求證:拋物線(xiàn)S R兩點(diǎn)處的切線(xiàn)的交點(diǎn)B恒在一條直線(xiàn)上.
【答案】分析:(1)設(shè)出P,Q的坐標(biāo),利用=0求得a和b的關(guān)系,設(shè)出M的坐標(biāo),利用=-,可求得x和y的表達(dá)式,消去b,進(jìn)而求得x和y的關(guān)系式.
(2)設(shè)出A,S,R,則可表示SR的方程把點(diǎn)A代入SR,同時(shí)對(duì)曲線(xiàn)C的方程求導(dǎo),判斷出SR處的切線(xiàn)方程,最后聯(lián)立方程求得ax-2y-2b=0判斷出B點(diǎn)在直線(xiàn).
解答:解:(1)設(shè)P(a,0),Q(0,b)則:=(a,3)(a,-b)=a2-3b=0
∴a2=3b
設(shè)M(x,y)∵=-
∴x==-2a,y==3b∴y=x2
(2)設(shè)A(a,b),S(x1,x12),R(x2,x22),(x1≠x2
則直線(xiàn)SR的方程為:y-x12=(x-x1),即4y=(x1+x2)x-x1x2
∵A點(diǎn)在SR上,
∴4b=(x1+x2)a-x1x2
對(duì)y=x2求導(dǎo)得:y′=x
∴拋物線(xiàn)上SR處的切線(xiàn)方程為
y-x12=x1(x-x1)即4y=2x1x-x12
y-x22=x2(x-x2)即4y=2x2x-x22
聯(lián)立②③得
代入①得:ax-2y-2b=0故:B點(diǎn)在直線(xiàn)ax-2y-2b=0上
點(diǎn)評(píng):本題主要考查了直線(xiàn)與圓錐曲線(xiàn)的綜合問(wèn)題.考查了學(xué)生對(duì)問(wèn)題的綜合分析和基本的運(yùn)算能力.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知點(diǎn)H(0,-3),點(diǎn)P在x軸上,點(diǎn)Q在y軸正半軸上,點(diǎn)M在直線(xiàn)PQ上,且滿(mǎn)足
HP
PM
=0,
PM
=-
3
2
MQ

(1)當(dāng)點(diǎn)P在x軸上移動(dòng)時(shí),求動(dòng)點(diǎn)M的軌跡曲線(xiàn)C的方程;
(2)過(guò)定點(diǎn)A(a,b)的直線(xiàn)與曲線(xiàn)C相交于兩點(diǎn)S R,求證:拋物線(xiàn)S R兩點(diǎn)處的切線(xiàn)的交點(diǎn)B恒在一條直線(xiàn)上.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2008•臨沂二模)已知點(diǎn)H(0,-3),點(diǎn)P在x軸上,點(diǎn)Q在y軸正半軸上,點(diǎn)M在直線(xiàn)PQ上,且滿(mǎn)足
HP
PM
=0,
PM
=-
3
2
MQ

(I)當(dāng)點(diǎn)P在x軸上移動(dòng)時(shí),求動(dòng)點(diǎn)M的軌跡方程;
(Ⅱ)設(shè)動(dòng)點(diǎn)M的軌跡為C,如果過(guò)定點(diǎn)A(x0,y0)的直線(xiàn)與曲線(xiàn)C相交不同的兩點(diǎn)S、R,求證:曲線(xiàn)C在S、R兩點(diǎn)處的切線(xiàn)的交點(diǎn)在一條定直線(xiàn)上.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(08年衡陽(yáng)八中理)( 13分)  已知點(diǎn)H(0,3),點(diǎn)P在x軸上,點(diǎn)Q在y軸正半軸上,點(diǎn)M在直線(xiàn)PQ上,且滿(mǎn)足,.

(1)當(dāng)點(diǎn)P在x軸上移動(dòng)時(shí),求動(dòng)點(diǎn)M的軌跡曲線(xiàn)C的方程;
(2)過(guò)定點(diǎn)A(a,b)的直線(xiàn)與曲線(xiàn)C相交于兩點(diǎn)S、R,求證:曲線(xiàn)C在S、R兩點(diǎn)處的切線(xiàn)的交點(diǎn)B恒在一條直線(xiàn)上.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知點(diǎn)H(0,-3),點(diǎn)P在x軸上,點(diǎn)Q在y軸正半軸上,點(diǎn)M在直線(xiàn)PQ上,且滿(mǎn)足數(shù)學(xué)公式數(shù)學(xué)公式=0,數(shù)學(xué)公式=-數(shù)學(xué)公式
(1)當(dāng)點(diǎn)P在x軸上移動(dòng)時(shí),求動(dòng)點(diǎn)M的軌跡曲線(xiàn)C的方程;
(2)過(guò)定點(diǎn)A(a,b)的直線(xiàn)與曲線(xiàn)C相交于兩點(diǎn)S R,求證:拋物線(xiàn)S R兩點(diǎn)處的切線(xiàn)的交點(diǎn)B恒在一條直線(xiàn)上.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:臨沂二模 題型:解答題

已知點(diǎn)H(0,-3),點(diǎn)P在x軸上,點(diǎn)Q在y軸正半軸上,點(diǎn)M在直線(xiàn)PQ上,且滿(mǎn)足
HP
PM
=0,
PM
=-
3
2
MQ

(I)當(dāng)點(diǎn)P在x軸上移動(dòng)時(shí),求動(dòng)點(diǎn)M的軌跡方程;
(Ⅱ)設(shè)動(dòng)點(diǎn)M的軌跡為C,如果過(guò)定點(diǎn)A(x0,y0)的直線(xiàn)與曲線(xiàn)C相交不同的兩點(diǎn)S、R,求證:曲線(xiàn)C在S、R兩點(diǎn)處的切線(xiàn)的交點(diǎn)在一條定直線(xiàn)上.

查看答案和解析>>

同步練習(xí)冊(cè)答案