已知函數(shù)f(x)=a|log2x|+1(a≠0),定義函數(shù)F(x)=
f(x),x>0
f(-x),x<0
,給出下列命題:
①F(x)=|f(x)|;
②函數(shù)F(x)是偶函數(shù);
③當(dāng)a<0時(shí),若0<m<n<1,則有F(m)-F(n)<0成立;
④當(dāng)a>0時(shí),函數(shù)y=F(x)-2有4個(gè)零點(diǎn).
其中正確命題的個(gè)數(shù)為( 。
A、0B、1C、2D、3
考點(diǎn):對(duì)數(shù)函數(shù)的圖像與性質(zhì)
專題:函數(shù)的性質(zhì)及應(yīng)用
分析:(1)|f(x)|=|a|log2x|+1|,∴F(x)≠|(zhì)f(x)|;①不對(duì):(2)F(-x)=
f(-x),x<0
f(x),x>0
=F(x),函數(shù)F(x)是偶函數(shù);故②正確
(3)|log2m|>|log2n|,a|log2m|+1>a|log2n|+1,即F(m)<F(n)成立;故F(m)-F(n)<0成立;所以③正確
(4)x>0時(shí),F(xiàn)(x)的最小值為F(1)=1,運(yùn)用圖象判斷即可.
解答: 解:(1)∵函數(shù)f(x)=a|log2x|+1(a≠0),定義函數(shù)F(x)=
f(x),x>0
f(-x),x<0
,
∴|f(x)|=|a|log2x|+1|,∴F(x)≠|(zhì)f(x)|;
①不對(duì)
(2)∵F(-x)=
f(-x),x<0
f(x),x>0
=F(x)
∴函數(shù)F(x)是偶函數(shù);
故②正確
(3)∵當(dāng)a<0時(shí),若0<m<n<1,
∴|log2m|>|log2n|
∴a|log2m|+1>a|log2n|+1,
即F(m)<F(n)成立;
故F(m)-F(n)<0成立;
所以③正確
(4)

∵f(x)=a|log2x|+1(a≠0),定義函數(shù)F(x)=
f(x),x>0
f(-x),x<0
,
∴x>0時(shí),(0,1)單調(diào)遞減,(1,+∞)單調(diào)遞增
∴x>0時(shí),F(xiàn)(x)的最小值為F(1)=1,
故x>0時(shí),F(xiàn)(x)與y=-2有2個(gè)交點(diǎn),
∵函數(shù)F(x)是偶函數(shù)
∴x<0時(shí),F(xiàn)(x)與y=-2有2個(gè)交點(diǎn)
故當(dāng)a>0時(shí),函數(shù)y=F(x)-2有4個(gè)零點(diǎn).
所以④正確,
點(diǎn)評(píng):本題綜合考察了函數(shù)的性質(zhì),運(yùn)用圖象解決問題,對(duì)于函數(shù)式子與性質(zhì)的結(jié)合,關(guān)鍵是理解,有一定的難度.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=
x3,x≤0
log
1
3
x,x>0
,則方程f(x)=-1解的個(gè)數(shù)為( 。
A、0B、1C、2D、3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

由y=x2,y=x所圍成的圖形繞y軸旋轉(zhuǎn)所得到的旋轉(zhuǎn)體的體積V=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,圓周角∠BAC的平分線與圓交于點(diǎn)D,過點(diǎn)D的切線與弦AC的延長線交于點(diǎn) E,AD交BC于點(diǎn)F.
(Ⅰ)求證:BC∥DE;
(Ⅱ)若D,E,C,F(xiàn)四點(diǎn)共圓,且
AC
=
BC
,求∠BAC.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知:等差數(shù)列{an}中,a3=5,a5=9.
(Ⅰ)求數(shù)列{an}的通項(xiàng)公式;
(Ⅱ)若bn=2an,Sn是數(shù)列{bn}的前n項(xiàng)和,試求滿足Sn>2015的最小正整數(shù)n.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知△ABC的三個(gè)角∠A,∠B,∠C所對(duì)的邊分別為a,b,c,b=c=
2
+
6
,∠B=75°,求a.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=ex-ax(a∈R,e為自然對(duì)數(shù)的底數(shù))
(1)討論函數(shù)f(x)的單調(diào)性;
(2)若a=1,函數(shù)g(x)=(x-m)f(x)-ex+x2+x在x∈(2,+∞)上為增函數(shù),求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,A,B分別是射線OM,ON上的兩點(diǎn),給出下列向量:①
OA
+2
OB
;②
1
2
OA
+
1
3
OB
;③
3
4
OA
+
1
3
OB
;④
3
4
OA
+
1
5
OB
;⑤
3
4
OA
-
1
5
OB
,若這些向量均以O(shè)為起點(diǎn),則終點(diǎn)落在陰影區(qū)域內(nèi)(包括邊界)的有( 。
A、①②B、②④C、①③D、③⑤

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

把邊長為4、2的矩形卷成一個(gè)圓柱的側(cè)面,其體積是( 。
A、
8
π
B、
π
8
C、
8
π
4
π
D、
4
π

查看答案和解析>>

同步練習(xí)冊(cè)答案