【題目】如圖,在四棱錐P-ABCD中,底而ABCD是菱形,且PA=AD=2,∠PAD=BAD=120°,E,F分別為PDBD的中點(diǎn),且

1)求證:平面PAD⊥平面ABCD

2)求銳二面角E-AC-D的余弦值.

【答案】(1)見(jiàn)解析;(2)

【解析】

1)先過(guò)PPOAD,再通過(guò)平幾知識(shí)計(jì)算得POBO,利用線(xiàn)面垂直判定定理得PO⊥平面ABCD,再根據(jù)面面垂直判定定理得結(jié)果,(2)先根據(jù)條件建立空間直角坐標(biāo)系,設(shè)立各點(diǎn)坐標(biāo),列方程組解得平面ACE的一個(gè)法向量,根據(jù)向量數(shù)量積得向量夾角,最后根據(jù)二面角與向量夾角關(guān)系得結(jié)果.

1)過(guò)PPOAD,垂足為O,連結(jié)AO,BO

由∠PAD=120°,得∠PAO=60°,

∴在RtPAO中,PO=PAsinPAO=2sin60°=2×=,

∵∠BAO=120°,∴∠BAO=60°,AO=AO,∴△PAO≌△BAO,∴BO=PO=,

E,F分別是PA,BD的中點(diǎn),EF=,∴EFPBD的中位線(xiàn),

PB=2EF=2×=,

PB2=PO2+BO2,∴POBO,∵AD∩BO=O,∴PO⊥平面ABCD,

PO平面PAD,∴平面PAD⊥平面ABCD

2)以O為原點(diǎn),OBx軸,ODy軸,OPz軸,建立空間直角坐標(biāo)系,

A0,1,0),P00,),B,00),D0,30),

E0,),F,),=0),=,0),

易得平面ABCD的一個(gè)法向量=0,01),

設(shè)平面ACE的法向量=x,yz),則

x=1,得=1-1),

設(shè)銳二面角的平面角的大小為θ,則cosθ=|cos|==,

∴銳二面角E-AC-D的余弦值為

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】博覽會(huì)安排了分別標(biāo)有序號(hào)為“1號(hào)”“2號(hào)”“3號(hào)”的三輛車(chē),等可能隨機(jī)順序前往酒店接嘉賓.某嘉賓突發(fā)奇想,設(shè)計(jì)兩種乘車(chē)方案.方案一:不乘坐第一輛車(chē),若第二輛車(chē)的車(chē)序號(hào)大于第一輛車(chē)的車(chē)序號(hào),就乘坐此車(chē),否則乘坐第三輛車(chē);方案二:直接乘坐第一輛車(chē).記方案一與方案二坐到“3號(hào)”車(chē)的概率分別為P1,P2,則( )

A. P1P2 B. P1=P2 C. P1+P2 D. P1<P2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知,,設(shè)直線(xiàn),其中,給出下列結(jié)論:

①直線(xiàn)的方向向量與向量共線(xiàn);

②若,則直線(xiàn)與直線(xiàn)的夾角為

③直線(xiàn)與直線(xiàn))一定平行;

寫(xiě)出所有真命題的序號(hào)________

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知雙曲線(xiàn)的左、右焦點(diǎn)分別是、,左、右兩頂點(diǎn)分別是、,弦ABCD所在直線(xiàn)分別平行于x軸與y軸,線(xiàn)段BA的延長(zhǎng)線(xiàn)與線(xiàn)段CD相交于點(diǎn)如圖).

的一條漸近線(xiàn)的一個(gè)方向向量,試求的兩漸近線(xiàn)的夾角;

,,,,試求雙曲線(xiàn)的方程;

的條件下,且,點(diǎn)C與雙曲線(xiàn)的頂點(diǎn)不重合,直線(xiàn)和直線(xiàn)與直線(xiàn)l分別相交于點(diǎn)MN,試問(wèn):以線(xiàn)段MN為直徑的圓是否恒經(jīng)過(guò)定點(diǎn)?若是,請(qǐng)求出定點(diǎn)的坐標(biāo);若不是,試說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知某運(yùn)動(dòng)員每次投籃命中的概率低于,現(xiàn)采用隨機(jī)模擬的方法估計(jì)該運(yùn)動(dòng)員三次投籃恰有兩次命中的概率:先由計(jì)算器產(chǎn)生09之間取整數(shù)值的隨機(jī)數(shù),指定1,234表示命中,56,7890表示不命中;再以每三個(gè)隨機(jī)數(shù)為一組,代表三次投籃的結(jié)果.經(jīng)隨機(jī)模擬產(chǎn)生了如下20組隨機(jī)數(shù):

907 966 191 925 271 932 812 458 569 683

431 257 393 027 556 488 730 113 537 989

據(jù)此估計(jì),該運(yùn)動(dòng)員三次投籃恰有兩次命中的概率為(

A.0.35B.0.25C.0.20D.0.15

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某工廠(chǎng)預(yù)購(gòu)軟件服務(wù),有如下兩種方案:

方案一:軟件服務(wù)公司每日收取工廠(chǎng)60元,對(duì)于提供的軟件服務(wù)每次10元;

方案二:軟件服務(wù)公司每日收取工廠(chǎng)200元,若每日軟件服務(wù)不超過(guò)15次,不另外收費(fèi),若超過(guò)15次,超過(guò)部分的軟件服務(wù)每次收費(fèi)標(biāo)準(zhǔn)為20元.

(1)設(shè)日收費(fèi)為元,每天軟件服務(wù)的次數(shù)為,試寫(xiě)出兩種方案中的函數(shù)關(guān)系式;

(2)該工廠(chǎng)對(duì)過(guò)去100天的軟件服務(wù)的次數(shù)進(jìn)行了統(tǒng)計(jì),得到如圖所示的條形圖,依據(jù)該統(tǒng)計(jì)數(shù)據(jù),把頻率視為概率,從節(jié)約成本的角度考慮,從兩個(gè)方案中選擇一個(gè),哪個(gè)方案更合適?請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在直四棱柱中,底面是矩形,交于點(diǎn).

(1)證明:平面;

(2)求直線(xiàn)與平面所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知橢圓的兩焦點(diǎn)分別為,是橢圓在第一象限內(nèi)的一點(diǎn),并滿(mǎn)足,過(guò)作傾斜角互補(bǔ)的兩直線(xiàn)、分別交橢圓于兩點(diǎn).

1)求點(diǎn)坐標(biāo);

2)當(dāng)直線(xiàn)經(jīng)過(guò)點(diǎn)時(shí),求直線(xiàn)的方程;

3)求證直線(xiàn)的斜率為定值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某企業(yè)購(gòu)買(mǎi)某種儀器,在儀器使用期間可能出現(xiàn)故障,需要請(qǐng)銷(xiāo)售儀器的企業(yè)派工程師進(jìn)行維修,因?yàn)榭紤]到人力、成本等多方面的原因,銷(xiāo)售儀器的企業(yè)提供以下購(gòu)買(mǎi)儀器維修服務(wù)的條件:在購(gòu)買(mǎi)儀器時(shí),可以直接購(gòu)買(mǎi)儀器維修服務(wù),維修一次1000元;在儀器使用期間,如果維修服務(wù)次數(shù)不夠再次購(gòu)買(mǎi),則需要每次1500元..現(xiàn)需決策在購(gòu)買(mǎi)儀器的同時(shí)購(gòu)買(mǎi)幾次儀器維修服務(wù),為此搜集并整理了500臺(tái)這種機(jī)器在使用期內(nèi)需要維修的次數(shù),得到如下表格:

維修次數(shù)

5

6

7

8

9

頻數(shù)(臺(tái))

50

100

150

100

100

表示一臺(tái)儀器使用期內(nèi)維修的次數(shù),表示一臺(tái)儀器使用期內(nèi)維修所需要的費(fèi)用,表示購(gòu)買(mǎi)儀器的同時(shí)購(gòu)買(mǎi)的維修服務(wù)的次數(shù).

(1)若,求的函數(shù)關(guān)系式;

(2)以這500臺(tái)儀器使用期內(nèi)維修次數(shù)的頻率代替一臺(tái)儀器維修次數(shù)發(fā)生的概率,求的概率.

(3)假設(shè)購(gòu)買(mǎi)這500臺(tái)儀器的同時(shí)每臺(tái)都購(gòu)買(mǎi)7次維修服務(wù),或每臺(tái)都購(gòu)買(mǎi)8次維修服務(wù),請(qǐng)分別計(jì)算這500臺(tái)儀器在購(gòu)買(mǎi)維修服務(wù)所需要費(fèi)用的平均數(shù),以此為決策依據(jù),判斷購(gòu)買(mǎi)7次還是8次維修服務(wù)?

查看答案和解析>>

同步練習(xí)冊(cè)答案