(12分)如圖,在三棱柱ABC﹣A1B1C1中,側棱AA1⊥底面ABC,AB=AC=2AA1,∠BAC=120°,D,D1分別是線段BC,B1C1的中點,P是線段AD的中點.

(I)在平面ABC內,試做出過點P與平面A1BC平行的直線l,說明理由,并證明直線l⊥平面ADD1A1
(II)設(I)中的直線l交AB于點M,交AC于點N,求二面角A﹣A1M﹣N的余弦值.

(I)見解析(II)

解析

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:解答題

在四棱錐中,側面底面,中點,底面是直角梯形,,,,.

(1)求證:
(2)求證:面;
(3)設為棱上一點,,試確定的值使得二面角.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

如圖,邊長為a的正方形ABCD中,點E、F分別在AB、BC上,且,將△AED、△CFD分別沿DE、DF折起,使A、C兩點重合于點,連結A¢B.

(Ⅰ)判斷直線EF與A¢D的位置關系,并說明理由;
(Ⅱ)求二面角F-A¢B-D的大。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

如左圖,四邊形中,的中點,,,,,將左圖沿直線折起,使得二面角,如右圖.
(1)證明:平面;
(2)求直線與平面所成角的余弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

如圖,平面四邊形的4個頂點都在球的表面上,為球的直徑,為球面上一點,且平面 ,,點的中點.
(1) 證明:平面平面;
(2) 求點到平面的距離.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

如圖,是圓的直徑,點在圓上,,于點,
平面,
(1)證明:
(2)求平面與平面所成的銳二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

正方形的邊長為2,分別為邊的中點,是線段的中點,如圖,把正方形沿折起,設

(1)求證:無論取何值,不可能垂直;
(2)設二面角的大小為,當時,求的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

如圖,四棱錐中,,,分別為的中點.

(Ⅰ)求證:;
(Ⅱ)求證:.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知四棱錐P-ABCD的三視圖如下圖所示,E是側棱PC上的動點.


(1)求四棱錐P-ABCD的體積;
(2)是否不論點E在何位置,都有BD⊥AE?證明你的結論;
(3)若點E為PC的中點,求二面角D-AE-B的大小.

查看答案和解析>>

同步練習冊答案