如圖,已知長方形ABCD中,AB=2,AD=1,M為DC的中點(diǎn).將△ADM沿AM折起,使得平面ADM⊥平面ABCM.
(1)求證:AD⊥BM;
(2)若點(diǎn)E是線段DB上的一動點(diǎn),問點(diǎn)E在何位置時,二面角E-AM-D的余弦值為
5
5

考點(diǎn):用空間向量求平面間的夾角,平面與平面垂直的性質(zhì),與二面角有關(guān)的立體幾何綜合題
專題:綜合題,空間位置關(guān)系與距離,空間角
分析:(1)先證明BM⊥AM,再利用平面ADM⊥平面ABCM,證明BM⊥平面ADM,從而可得AD⊥BM;
(2)建立直角坐標(biāo)系,設(shè)
DE
DB
,求出平面AMD、平面AME的一個法向量,利用向量的夾角公式,結(jié)合二面角E-AM-D的余弦值為
5
5
,即可得出結(jié)論.
解答: (1)證明:∵長方形ABCD中,AB=2,AD=1,M為DC的中點(diǎn),
∴AM=BM=
2
,
∴BM⊥AM,
∵平面ADM⊥平面ABCM,平面ADM∩平面ABCM=AM,BM?平面ABCM
∴BM⊥平面ADM
∵AD?平面ADM
∴AD⊥BM;
(2)建立如圖所示的直角坐標(biāo)系,設(shè)
DE
DB
,

則平面AMD的一個法向量
n
=(0,1,0)
,
ME
=
MD
DB
=(
2
2
-
2
2
λ,
2
2
λ,
2
2
-
2
2
λ)
AM
=(-
2
,0,0)

設(shè)平面AME的一個法向量為
m
=(x,y,z)
2
x=0
2
λy+
2
2
(1-λ)z=0

取y=1,得x=0,y=1,z=
1-λ
,所以
m
=(0,1,
1-λ
)
,
因?yàn)?span id="8440rm0" class="MathJye">cos?
m
,
n
>=
m
n
|
m
|•|n|
=
5
5

求得λ=
1
2
,所以E為BD的中點(diǎn).
點(diǎn)評:本題考查線面垂直,考查面面角,正確運(yùn)用面面垂直的性質(zhì),掌握線面垂直的判定方法,正確運(yùn)用向量法是關(guān)鍵.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=
x2+ax+7-a
x+1
,a∈R.若對于任意的x∈N*,f(x)≥4恒成立,則a的取值范圍是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知A,B,C是單位圓O上任意的不同三點(diǎn),若
OA
=2
OB
+x
OC
,則正實(shí)數(shù)x的取值范圍為( 。
A、(0,2]
B、[1,3]
C、[2,4]
D、[3,5]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知橢圓具有如下性質(zhì):若M、N是橢圓C上關(guān)于原點(diǎn)對稱的兩個點(diǎn),點(diǎn)P是橢圓上的任意一點(diǎn),當(dāng)直線PM、PN的斜率都存在,并記為kPM、kPN時,則kPM與kPN之積是與點(diǎn)P位置無關(guān)的定值.試寫出雙曲線
x2
a2
-
y2
b2
=1(a>0,b>0)具有的類似的性質(zhì),并加以證明.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,在直三棱柱ABC-A1B1C1(側(cè)棱和底面垂直的棱柱)中,AB⊥BC,AB=BC=AA1=3,線段AC、A1B上分別有一點(diǎn)E、F,且滿足2AE=EC,2BF=FA1
(1)求證:平面A1BC⊥側(cè)面A1ABB1;
(2)求二面角F-BE-C的平面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在如圖所示的空間幾何體中,平面ACD⊥平面ABC,△ACD與△ACB是邊長為2的等邊三角形,BE=2,BE和平面ABC所成的角為60°,且點(diǎn)E在平面ABC上的射影落在∠ABC的平分線上.
(Ⅰ)求證:DE∥平面ABC;
(Ⅱ)求二面角E-BC-A的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,直角梯形ABCD中,∠ABC=∠BAD=90°,AB=BC=
1
2
AD
.梯形ABCD所在平面外有一點(diǎn)P,滿足PA⊥平面ABCD,PA=AB.
(1)求證:平面PCD⊥平面PAC;
(2)側(cè)棱PA上是否存在點(diǎn)E,使得BE∥平面PCD?若存在,指出E的位置并證明;若不存在請說明理由;
【理】(3)求二面角A-PD-C的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,四棱錐P-ABCD中,PA⊥面ABCD,E、F分別為BD、PD的中點(diǎn),EA=EB=AB=1,PA=2.
(Ⅰ)證明:PB∥面AEF;
(Ⅱ)求面PBD與面AEF所成銳角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知a>0且a≠1,函數(shù)f(x)=ax+a-x(x∈[-1,1]),g(x)=ax2-2ax+4-a(x∈[-1,1]).
(1)求f(x)的單調(diào)區(qū)間和值域;
(2)若對于任意x1∈[-1,1],總存在x0∈[-1,1],使得g(x0)=f(x1)成立,求a的取值范圍;
(3)若對于任意x0∈[-1,1],任意x1∈[-1,1],都有g(shù)(x0)≥f(x1)恒成立,求a的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案