(本小題滿分14分)
如圖5所示,在三棱錐中,,平面平面,于點(diǎn), ,,

(1)證明△為直角三角形;
(2)求直線與平面所成角的正弦值

(1)證明1:因?yàn)槠矫?img src="http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823210030438487.png" style="vertical-align:middle;" />平面,平面平面, 平面,,
所以平面
邊上的中點(diǎn)為,在△中,,所以
因?yàn)?img src="http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823210030422668.png" style="vertical-align:middle;" />,,所以

因?yàn)?img src="http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823210031140387.png" style="vertical-align:middle;" />,所以△為直角三角形.
因?yàn)?img src="http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823210030609508.png" style="vertical-align:middle;" />,,
所以
連接,在中,因?yàn)?img src="http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823210032450546.png" style="vertical-align:middle;" />,,
所以
因?yàn)?img src="http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823210031140387.png" style="vertical-align:middle;" />平面平面,所以
中,因?yàn)?img src="http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823210030609508.png" style="vertical-align:middle;" />,,
所以
中,因?yàn)?img src="http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823210033339542.png" style="vertical-align:middle;" />,,
所以
所以為直角三角形.
證明2:因?yàn)槠矫?img src="http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823210030438487.png" style="vertical-align:middle;" />平面,平面平面, 平面,
所以平面
邊上的中點(diǎn)為,在△中,因?yàn)?img src="http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823210031498517.png" style="vertical-align:middle;" />,所以
因?yàn)?img src="http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823210030422668.png" style="vertical-align:middle;" />,,所以
連接,在中,因?yàn)?img src="http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823210035055719.png" style="vertical-align:middle;" />,,
所以
在△中,因?yàn)?img src="http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823210030578451.png" style="vertical-align:middle;" />,,
所以,所以
因?yàn)?img src="http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823210031140387.png" style="vertical-align:middle;" />平面平面,
所以
因?yàn)?img src="http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823210035711584.png" style="vertical-align:middle;" />,所以平面
因?yàn)?img src="http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823210035867400.png" style="vertical-align:middle;" />平面,所以
所以為直角三角形.
(2)解法1:過(guò)點(diǎn)作平面的垂線,垂足為,連,
為直線與平面所成的角.
由(1)知,△的面積
因?yàn)?img src="http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823210030609508.png" style="vertical-align:middle;" />,所以
由(1)知為直角三角形,,
所以△的面積
因?yàn)槿忮F與三棱錐的體積相等,即
,所以
中,因?yàn)?img src="http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823210030609508.png" style="vertical-align:middle;" />,,
所以
因?yàn)?img src="http://thumb.zyjl.cn/pic2/upload/papers/20140823/201408232100368961480.png" style="vertical-align:middle;" />.
所以直線與平面所成角的正弦值為
解法2:過(guò)點(diǎn),設(shè)

與平面所成的角等于與平面所成的角.
由(1)知,,且,
所以平面
因?yàn)?img src="http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823210035664412.png" style="vertical-align:middle;" />平面
所以平面平面
過(guò)點(diǎn)于點(diǎn),連接
平面
所以為直線與平面所成的角.
中,因?yàn)?img src="http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823210030609508.png" style="vertical-align:middle;" />,,
所以
因?yàn)?img src="http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823210037271615.png" style="vertical-align:middle;" />,所以,即,所以
由(1)知,,且,
所以
因?yàn)?img src="http://thumb.zyjl.cn/pic2/upload/papers/20140823/201408232100389711668.png" style="vertical-align:middle;" />,
所以直線與平面所成角的正弦值為
解法3:延長(zhǎng)至點(diǎn),使得,連接、,
在△中,,

所以,即
在△中,因?yàn)?img src="http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823210033370605.png" style="vertical-align:middle;" />,,,
所以,
所以
因?yàn)?img src="http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823210039845571.png" style="vertical-align:middle;" />,
所以平面
過(guò)點(diǎn)于點(diǎn),
因?yàn)?img src="http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823210039969442.png" style="vertical-align:middle;" />平面
所以
因?yàn)?img src="http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823210040250580.png" style="vertical-align:middle;" />,
所以平面
所以為直線與平面所成的角.
由(1)知,,
所以
在△中,點(diǎn)、分別為邊、的中點(diǎn),
所以
在△中,,,,
所以,即
因?yàn)?img src="http://thumb.zyjl.cn/pic2/upload/papers/20140823/201408232100407651451.png" style="vertical-align:middle;" />.
所以直線與平面所成角的正弦值為
解法4:以點(diǎn)為坐標(biāo)原點(diǎn),以所在的直線分別為軸,軸建立如圖的空間直角坐標(biāo)系,
  
,,
于是,
設(shè)平面的法向量為,


,則,
所以平面的一個(gè)法向量為
設(shè)直線與平面所成的角為

所以直線與平面所成角的正弦值為
若第(1)、(2)問(wèn)都用向量法求解,給分如下:

(1)以點(diǎn)為坐標(biāo)原點(diǎn),以,所在的直線分別為軸,軸建立如圖的空間直角坐標(biāo)系,
,,
于是
因?yàn)?img src="http://thumb.zyjl.cn/pic2/upload/papers/20140823/201408232100434951466.png" style="vertical-align:middle;" />,
所以
所以
所以為直角三角形.
(2)由(1)可得,
于是,
設(shè)平面的法向量為,

,則,
所以平面的一個(gè)法向量為
設(shè)直線與平面所成的角為,

所以直線與平面所成角的正弦值為
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖,四棱錐的底面為矩形,且,
,,(Ⅰ)平面與平面是否垂直?并說(shuō)明理由;(Ⅱ)求直線與平面所成角的正弦值. 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖,在正方體中,點(diǎn)的中點(diǎn).
(1) 求所成的角的余弦值;
(2) 求直線與平面所成的角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

(本小題滿分15分)(文)如圖,在四棱錐P-ABCD中,底面為直角梯形,AD//BC,BAD=,PA⊥底面ABCD,且PA=AD=AB=2BC,M、N分別為PC、PB的中點(diǎn).

(Ⅰ)求證:PB⊥DM;
(Ⅱ) 求CD與平面ADMN所成角的余弦

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知矩形ABCD所在平面,PA=AD=,E為線段PD上一點(diǎn),G為線段PC的中點(diǎn).
(1)當(dāng)E為PD的中點(diǎn)時(shí),求證:
(2)當(dāng)時(shí),求證:BG//平面AEC.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

如圖,在正方體ABCD-A1B1C1D1中,BC1與平面BB1D1D所成角為( )
A.30°
B.45°
C.60°
D.120°

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

如圖正四面體ABCD,E為棱BC上的動(dòng)點(diǎn),則異面直線BD和AE所成角的余弦值的范圍為 _______.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

正方體中,二面角的正切值為
A.B.C.D.

查看答案和解析>>

同步練習(xí)冊(cè)答案