【題目】已知P={x|x2-8x-20≤0},S={x|1-m≤x≤1+m}.
(1)是否存在實(shí)數(shù)m,使x∈P是x∈S的充要條件,若存在,求出m的范圍;
(2)是否存在實(shí)數(shù)m,使x∈P是x∈S的必要條件,若存在,求出m的范圍.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】 一個(gè)幾何體的三視圖如圖所示,已知正(主)視圖是底邊長(zhǎng)為1的平行四邊形,側(cè)(左)視圖是一個(gè)長(zhǎng)為,寬為1的矩形,俯視圖為兩個(gè)邊長(zhǎng)為1的正方形拼成的矩形.
(1)求該幾何體的體積;
(2)求該幾何體的表面積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某商店計(jì)劃每天購(gòu)進(jìn)某商品若干件,商店每銷(xiāo)售一件該商品可獲利潤(rùn)60元,若供大于求,剩余商品全部退回,但每件商品虧損10元;若供不應(yīng)求,則從外部調(diào)劑,此時(shí)每件調(diào)劑商品可獲利40元.
(1)若商品一天購(gòu)進(jìn)該商品10件,求當(dāng)天的利潤(rùn)(單位:元)關(guān)于當(dāng)天需求量(單位:件,)的函數(shù)解析式;
(2)商店記錄了50天該商品的日需求量(單位:件,),整理得下表:
若商店一天購(gòu)進(jìn)10件該商品,以50天記錄的各需求量的頻率作為各需求量發(fā)生的概率,求當(dāng)天的利潤(rùn)在區(qū)間內(nèi)的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】兩個(gè)球的體積之比為8:27,那么這兩個(gè)球的表面積之比為( )
A. 2:3 B. 4:9 C. 8:27 D. 16:81
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知圓心坐標(biāo)為的圓與軸及直線分別相切于、兩點(diǎn),另一圓與圓外切,且與軸及直線分別相切于、兩點(diǎn).
(1)求圓和圓的方程;
(2)過(guò)點(diǎn)作直線的平行線,求直線被圓截得的弦的長(zhǎng)度.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)函數(shù),.
(1)求函數(shù)的單調(diào)區(qū)間;
(2)當(dāng)時(shí),討論函數(shù)與圖象的交點(diǎn)個(gè)數(shù).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在等差數(shù)列{an}中,a3=1,公差d=2,則a8的值為( )
A. 9 B. 10 C. 11 D. 12
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知直線與拋物線交于兩點(diǎn),且線段恰好被點(diǎn)平分.
(1)求直線的方程;
(2)拋物線上是否存在點(diǎn)和,使得關(guān)于直線對(duì)稱(chēng)?若存在,求出直線的方程;若不存在,說(shuō)明理由.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com