精英家教網 > 高中數學 > 題目詳情
△ABC的內角A、B、C的對邊分別為a,b,c,asin A+csin C-asin C=bsin B.
(1)求B;
(2)若A=75°,b=2,求a,c.
 (1) B=45°.  (2) a=1+,c=.

試題分析: (1)由正弦定理得a2+c2ac=b2.                 (2分)
由余弦定理得b2=a2+c2-2accos B.                           (4分)                   
故cos B=,又0°<B<180°,因此B=45°.                   (6分)
(2)sin A=sin(30°+45°)=sin 30°cos 45°+cos 30°sin 45°=.(8分)
故a=b·=1+,(10分)
c=b·=2·.(12分)
點評:典型題,本題解答思路明確,首先應用正弦定理,轉化得到邊的關系式,利用余弦定理求角。(2)應用正弦定理及兩角和與差的三角函數公式,確定邊長。本題較易。
練習冊系列答案
相關習題

科目:高中數學 來源:不詳 題型:解答題

已知分別為三個內角的對邊,
(1)求角 A  (2)若,的面積為;求.

查看答案和解析>>

科目:高中數學 來源:不詳 題型:單選題

如圖,設A、B兩點在河的兩岸,一測量者在A的同側,在所在的河岸邊選定一點C,測出AC的距離為50 m,∠ACB=45°,∠CAB=105°后,就可以計算出A、B兩點的距離為        (    )

A.50 m       B.50 m       
C.25 m              D. m

查看答案和解析>>

科目:高中數學 來源:不詳 題型:解答題

中,分別為內角所對的邊長,,,,求:
(1)角的大小;
(2)邊上的高。

查看答案和解析>>

科目:高中數學 來源:不詳 題型:解答題

在△中,角,,的對邊分別為.
已 知向量, ,.
(1)求的值;
(2)若,求△周長的范圍.

查看答案和解析>>

科目:高中數學 來源:不詳 題型:單選題

在△ABC中,A=45°,AC=4,AB=,那么cosB=(    )
A.B.C.D.

查看答案和解析>>

科目:高中數學 來源:不詳 題型:填空題

( 理科 )(1).(坐標系與參數方程選做題)已知在極坐標系下,點是極點,則的面積等于_______;
(2).(不等式選擇題)關于的不等式的解集是____    ____。

查看答案和解析>>

科目:高中數學 來源:不詳 題型:解答題

在ΔABC中,角A、B、C所對的邊分別為a,b,c,且,。
(1)求的值;
(2)求ΔABC的面積。

查看答案和解析>>

科目:高中數學 來源:不詳 題型:填空題

已知a,b,c分別是△ABC的三個內角A,B,C的對邊長,若,則A等于        .

查看答案和解析>>

同步練習冊答案