已知f(x)=sin2x+2sin2x.
(I)求f(
π
4
)的值;
(Ⅱ)設(shè)θ∈(0,π),f(
θ
2
)=
4
5
,求tanθ的值.
考點(diǎn):三角函數(shù)中的恒等變換應(yīng)用,同角三角函數(shù)基本關(guān)系的運(yùn)用
專題:三角函數(shù)的求值
分析:(I)直接根據(jù)函數(shù)的表達(dá)式直接代入即可求f(
π
4
)的值;
(Ⅱ)設(shè)θ∈(0,π),f(
θ
2
)=
4
5
,建立條件關(guān)系即可求tanθ的值.
解答: 解:(Ⅰ)∵f(x)=sin2x-cos2x+1,
f(
π
4
)=sin
π
2
-cos
π
2
+1
=2.
(Ⅱ)∵f(
θ
2
)=sinθ-cosθ+1=
4
5
,
sinθ-cosθ=-
1
5
,平方得2sinθcosθ=
24
25
>0,
∵θ∈(0,π),∴θ∈(0,
π
2
),
則(sinθ+cosθ)2=1+2sinθcosθ=
49
25

∴sinθ+cosθ=
7
5
,解得sinθ=
3
5
,cosθ=
4
5
,
則tanθ=
sinθ
cosθ
=
3
4
點(diǎn)評(píng):本題主要考查三角函數(shù)求值問題,利用三角函數(shù)的同角的關(guān)系式是解決本題的關(guān)鍵.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

在扶貧活動(dòng)中,為了盡快脫貧(無債務(wù))致富,企業(yè)甲將經(jīng)營(yíng)狀況良好的某種消費(fèi)品專賣店以5.8萬元的優(yōu)惠價(jià)格轉(zhuǎn)讓給了尚有5萬元無息貸款沒有償還的小型企業(yè)乙,并約定從該店經(jīng)營(yíng)的利潤(rùn)中,首先保證企業(yè)乙的全體職工每月最低生活費(fèi)的開支3600無后,逐步償還轉(zhuǎn)讓費(fèi)(不計(jì)息).在甲提供的資料中有:①這種消費(fèi)品的進(jìn)價(jià)為每件14元;②該店月銷量Q(百件)與銷售價(jià)格P(元)的關(guān)系如圖所示;③每月需要各種開支2000元.
(1)當(dāng)商品的價(jià)格為每件多少元時(shí),月利潤(rùn)扣除職工最低生活費(fèi)的余額最大?并求最大余額;
(2)企業(yè)乙只依靠該店,最早可望在幾年后脫貧?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在等差數(shù)列{an}中,a1=15,a5=7.
(1)求{an}的通項(xiàng)公式an;
(2)求{an}的前n項(xiàng)和Sn的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知命題s:方程x2+(m-3)x+m=0的一根在(0,1)內(nèi),另一根在(2,3)內(nèi),命題t:函數(shù)f(x)=ln(mx2-2x+1)的定義域?yàn)槿w實(shí)數(shù).若s∨t為真命題,求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=
a+lnx
x
(a∈R).
(Ⅰ)若a=4,求曲線f(x)在點(diǎn)(e,f(e))處的切線方程;
(Ⅱ)求f(x)的極值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,直三棱柱ABC-A1B1C1中,∠BAC=90°,AB=AC=
1
2
BB1,D是BB1的中點(diǎn).
(Ⅰ)求證:平面ADC⊥平面A1DC;
(Ⅱ)設(shè)BC=
2
,求幾何體A1B1DCC1的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知-1是函數(shù)y=x2-px-3的零點(diǎn),求出集合{x|(x-p)(2x2-px-4)=0}的所有元素.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖所示,正三棱柱ABC-A1B1C1中E,F(xiàn),G,H分別是AB、AC、A1C1、A1B1的中點(diǎn).
求證:平面A1EF∥平面BCGH.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

函數(shù)f(x)=cos(4x+ϕ)的圖象關(guān)于原點(diǎn)成中心對(duì)稱,則ϕ=
 

查看答案和解析>>

同步練習(xí)冊(cè)答案