12.在3張卡片的正反兩面上,分別寫著數(shù)字1和2,4和5,7和8,將它們并排組成三位數(shù),不同的三位數(shù)的個(gè)數(shù)是48.

分析 由題意可知,每一張卡片有2種結(jié)果,由分步計(jì)數(shù)原理可得共有2×2×2種結(jié)果,三張卡片還有一個(gè)排列,根據(jù)分步計(jì)數(shù)原理得到答案.

解答 解:根據(jù)題意,分2步進(jìn)行分析:
①、每張卡片的正反兩面上寫著不同數(shù)字,則每一張卡片有2種結(jié)果,三張卡片共有2×2×2=8種結(jié)果,
②、考慮三張卡片之間的順序,有A33=6種結(jié)果,
則一共可以組成8×6=48個(gè)不同的三位數(shù);
故答案為:48.

點(diǎn)評(píng) 本題考查分步計(jì)數(shù)原理的應(yīng)用,注意正確進(jìn)行分步分析.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.在△ABC中,角A、B、C的對(duì)邊分別為a,b,c,角A,B,C成等差數(shù)列.
(Ⅰ)求cosB的值; 
(Ⅱ)邊b2=ac,求sinAsinC的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.已知數(shù)列{an}的首項(xiàng)a1=2,前n項(xiàng)和為Sn,$3{S_n}-4,{a_n},2-\frac{{3{S_{n-1}}}}{2},(n≥2)$總是成等差數(shù)列.
(1)證明數(shù)列{an}為等比數(shù)列;
(2)求滿足不等式${a_n}<{(-4)^{n-1}}$的正整數(shù)n的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

20.若函數(shù)f(x)=x3+3ax-1在x=1處的切線與直線y=6x+6平行,則實(shí)數(shù)a=1;
當(dāng)a≤0時(shí),若方程f(x)=15有且只有一個(gè)實(shí)根,則實(shí)數(shù)a的取值范圍為-$\root{3}{16}$<a≤0.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.已知向量$\vec a=(1,2)$,$\vec b=(1,0)$,$\vec c=(3,4)$.若λ為實(shí)數(shù),$(\overrightarrow a+λ\overrightarrow b)∥\overrightarrow c$,則λ=(  )
A.2B.1C.$\frac{1}{2}$D.$\frac{1}{4}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

17.以直角坐標(biāo)系的原點(diǎn)為極點(diǎn),x軸正半軸為極軸建立極坐標(biāo)系,圓$\left\{\begin{array}{l}x=1+cosθ\\ y=sinθ\end{array}\right.$(θ為參數(shù))的極坐標(biāo)方程是ρ=2cosθ.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.已知函數(shù)f(x)=ex-ex-1,其中e為自然對(duì)數(shù)的底數(shù).函數(shù)g(x)=(2-e)x.
(1)求函數(shù)h(x)=f(x)-g(x)的單調(diào)區(qū)間;
(2)若函數(shù)$F(x)=\left\{\begin{array}{l}f(x),x≤m\\ g(x),x>m\end{array}\right.$的值域?yàn)镽,求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.在鈍角△ABC中,角A,B,C所對(duì)的邊分別為A,B,C且b=atanB.
(Ⅰ)求A-B的值;
(Ⅱ)求sinA+sinB的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.橢圓C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>1)的長(zhǎng)軸長(zhǎng)為2$\sqrt{2}$,P為橢圓C上異于頂點(diǎn)的一個(gè)動(dòng)點(diǎn),O為坐標(biāo)原點(diǎn),A2為橢圓C的右頂點(diǎn),點(diǎn)M為線段PA2的中點(diǎn),且直線PA2與直線OM的斜率之積恒為-$\frac{1}{2}$.
(1)求橢圓C的方程.
(2)過橢圓C的左焦點(diǎn)F1且不與坐標(biāo)軸垂直的直線l交橢圓C于A、B兩點(diǎn),線段AB的垂直平分線與x軸交于點(diǎn)N,點(diǎn)N的橫坐標(biāo)的取值范圍是(-$\frac{1}{4}$,0),求線段AB長(zhǎng)的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案