(本小題滿分13分)
計(jì)算下列各式的值:
(1); (2) .
(1)原式=;(2)原式=-4
解析試題分析:(1)注意根式與分?jǐn)?shù)指數(shù)冪之間的轉(zhuǎn)換問(wèn)題。(2)利用對(duì)數(shù)式的結(jié)論lg5+lg2=1,來(lái)化簡(jiǎn)求解得到結(jié)論。
解:
(1)原式=;.............................................6分
(2)原式=-4.................................................................13分
考點(diǎn):本試題主要考查了指數(shù)式和對(duì)數(shù)式的運(yùn)算問(wèn)題。
點(diǎn)評(píng):解決該試題的關(guān)鍵是將不是同底的指數(shù)函數(shù)化為同底的指數(shù)函數(shù),不是同底的對(duì)數(shù)函數(shù)化為同底的對(duì)數(shù)哈數(shù),結(jié)合運(yùn)算性質(zhì)得到。
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
(本小題滿分13分)某市“環(huán)保提案”對(duì)某處的環(huán)境狀況進(jìn)行了實(shí)地調(diào)研,據(jù)測(cè)定,該處的污染指數(shù)與附近污染源的強(qiáng)度成正比,與到污染源的距離成反比,比例常數(shù)為.現(xiàn)已知相距的,兩家化工廠(污染源)的污染強(qiáng)度分別為正數(shù),,它們連線上任意一點(diǎn)C處的污染指數(shù)等于兩化工廠對(duì)該處的污染指數(shù)之和.設(shè).
(1) 試將表示為的函數(shù);
(2) 若時(shí),在處取得最小值,試求的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
(本題滿分12分) 已知函數(shù).
(1)討論函數(shù)在定義域內(nèi)的極值點(diǎn)的個(gè)數(shù);
(2)若函數(shù)在處取得極值,對(duì),恒成立,求實(shí)數(shù)的取值范圍;
(3)當(dāng)且時(shí),試比較的大。
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
2013年全國(guó)第十二屆全運(yùn)會(huì)由沈陽(yáng)承辦。城建部門計(jì)劃在渾南新區(qū)建造一個(gè)長(zhǎng)方形公園ABCD,公園由長(zhǎng)方形的休閑區(qū)A1B1C1D1(陰影部分)和環(huán)公園人行道組成。已知休閑區(qū)A1B1C1D1的面積為4000平方米,人行道的寬分別為4米和10米。
(1)若設(shè)休閑區(qū)的長(zhǎng)米,求公園ABCD所占面積S關(guān)于的函數(shù)的解析式;
(2)要使公園所占面積最小,休閑區(qū)A1B1C1D1的長(zhǎng)和寬該如何設(shè)計(jì)?
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
(本小題滿分12分)設(shè)某物體一天中的溫度是時(shí)間的函數(shù):,其中溫度的單位是,時(shí)間單位是小時(shí),表示12:00,取正值表示12:00以后.若測(cè)得該物體在8:00的溫度是,12:00的溫度為,13:00的溫度為,且已知該物體的溫度在8:00和16:00有相同的變化率.
(1)寫出該物體的溫度關(guān)于時(shí)間的函數(shù)關(guān)系式;
(2)該物體在10:00到14:00這段時(shí)間中(包括10:00和14:00),何時(shí)溫度最高,并求出最高溫度;
(3)如果規(guī)定一個(gè)函數(shù)在區(qū)間上的平均值為,求該物體在8:00到16:00這段時(shí)間內(nèi)的平均溫度.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
(本小題滿分12分)已知函數(shù),,
(1) 判斷函數(shù)的奇偶性,并證明;
(2) 判斷的單調(diào)性,并說(shuō)明理由。(不需要嚴(yán)格的定義證明,只要說(shuō)出理由即可)
(3) 若,方程是否有根?如果有根,請(qǐng)求出一個(gè)長(zhǎng)度為1的區(qū)間,使;如果沒(méi)有,請(qǐng)說(shuō)明理由。(注:區(qū)間的長(zhǎng)度=)
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
(本小題滿分13分)(Ⅰ)若,求實(shí)數(shù)的取值范圍;
(Ⅱ)二次函數(shù),滿足,,求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
設(shè)函數(shù)在及時(shí)取得極值.
(Ⅰ)求a、b的值;
(Ⅱ)若對(duì)于任意的,都有成立,求c的取值范圍.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com