已知: 圓C1: x2+y2=1和圓C2: x2+y2-2x-2y+1=0相交于P、Q兩點(diǎn),則直線PQ截在圓C3: x2+y2內(nèi)的弦長為

[  ]

A.  B.  C.  D.

答案:A
解析:

解: 由兩圓方程相減得PQ方程,x+y-1=0


練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

7、已知兩圓⊙C1:x2+y2+D1x+E1y-3=0和⊙C1:x2+y2+D2x+E2y-3=0都經(jīng)過點(diǎn)A(2,-1),則同時(shí)經(jīng)過點(diǎn)(D1,E1)和點(diǎn)(D2,E2)的直線方程為( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(1)求與橢圓
x2
25
+
y2
16
=1
共焦點(diǎn)的拋物線的標(biāo)準(zhǔn)方程.
(2)已知兩圓C1:(x+4)2+y2=2,C2:(x-4)2+y2=2,動(dòng)圓M與兩圓一個(gè)內(nèi)切,一個(gè)外切,求動(dòng)圓圓心M的軌跡方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2013•河?xùn)|區(qū)二模)已知兩圓C1:x2+y2-2x=0,C2:(x+1)2+y2=4的圓心分別為C1,C2,P為一個(gè)動(dòng)點(diǎn),且|PC1|+|PC2|=2
2

(1)求動(dòng)點(diǎn)P的軌跡M的方程;
(2)是否存在過點(diǎn)A(2,0)的直線l與軌跡M交于不同的兩點(diǎn)C、D,使得|C1C|=|C1D|?若存在,求直線l的方程;若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知兩圓C1:(x+4)2+y2=2,C2:(x-4)2+y2=2,動(dòng)圓M與兩圓C1,C2都相切,則動(dòng)圓圓心M的軌跡方程是( 。
A、x=0
B、
x2
2
-
y2
14
=1(x≥
2
)
C、
x2
2
-
y2
14
=1
D、
x2
2
-
y2
14
=1或x=0

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知兩圓C1:(x-4)2+y2=169,C2:(x+4)2+y2=9,動(dòng)圓在圓C1內(nèi)部且和圓C1相內(nèi)切、和圓C2相外切,求動(dòng)圓圓心的軌跡.

查看答案和解析>>

同步練習(xí)冊(cè)答案